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ABSTRACT: We resolve a seeming paradox arising from a
common misinterpretation of Ben-Naim’s theorem, which rests on
the decomposition of the Hamiltonian of a molecular solute/
solvent system into solute−solvent and solvent−solvent inter-
actions. According to this theorem, the solvation entropy can also
be decomposed into a solute−solvent term and a remaining
solvent−solvent term that is commonly referred to as the solvent
reorganization term. Crucially, the latter equals the average
solvent−solvent interaction energy such that these two solvent−
solvent terms cancel and thus do not change the total solvation
free energy. This analytical result implies that changes in the
solvent−solvent interactions cannot contribute to any thermody-
namic driving force. The solvent reorganization term is often
identified with the contribution of many-body solvent correlations to the solvation entropy, which seems to imply that these
correlations, too, cannot contribute to solvation. However, recent calculations based on atomistic simulations of a solvated globular
protein and spatially resolved mutual information expansions revealed substantial contributions of many-body solvent correlations to
the solvation free energy, which are not canceled by the enthalpy change of the solvent. Here, we resolved this seeming contradiction
and illustrate by two examples�a simple Ising model and a solvated Lennard-Jones particle�that the solvent reorganization
entropy and the actual entropy contribution arising from many-body solvent correlations differ both conceptually and numerically.
Whereas the solvent reorganization entropy in fact arises from both solvent−solvent as well as solute−solvent interactions and thus
has no straightforward intuitive interpretation, the mutual information expansion permits an interpretation in terms of the entropy
contribution of solvent−solvent correlations to the solvation free energy.

1. INTRODUCTION
The hydrophobic effect is an essential driving force for many
processes in nature, such as phase separation, membrane
formation,1−3 or the function and folding of proteins.4,5

Despite its significance, the hydrophobic effect is not yet fully
understood from first-principles, and hence, its molecular
explanation remains controversial.6 The early “iceberg”
hypothesis by Frank and Evans,7 for example, turned out to
be equally popular and controversial. Frank and Evans
explained the unfavorable solvation free energy of hydrophobic
solutes in water by an entropic penalty due to an ordered
“iceberg” structure of water molecules that forms around the
solute. The term “iceberg” is not meant to be taken literally,
but rather refers to a higher ordering of the first few solvation
shells compared to bulk water.7,8

Indeed, the hydrophobic effect has been shown to be mainly
entropy-driven4 and such ordered structures have been found
around hydrophobic solutes.8−11 However, in seminal papers,
Ben-Naim12−14 has analytically proven that the so-called
solvation reorganization term or cavity formation term occurs
in both the enthalpic and the entropic part of the solvation free

energy; as a result, this term cancels out in the solvation free
energy and, therefore, structural changes to the solvent that
give rise to changes in solvent−solvent interactions cannot be a
thermodynamic driving force of solvation. Subsequently, Yu
and Karplus15 have obtained the same result via a different
route for the special case of pairwise additive interactions.
This important theorem has led to the general under-

standing that upon solvation, the enthalpy change arising from
solvent−solvent interactions and the entropy change due to
water ordering cancel as well and thus, too, cannot contribute
to the net free energy change of solvation. As we will discuss
below, this conclusion rests on the wrong interpretation of the
solvent reorganization term as an entropy change of the solvent
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or, more specifically, entropy changes due to many-body
solvent correlations. Indeed, ordered structures of water
molecules around hydrophobic solutes are still implied as the
cause of hydrophobicity,16,17 a notion that has then been
criticized by others.14,18 Overall, this seeming contradiction
caused considerable confusion and still does.
We have recently addressed this issue from a simulation

perspective and have calculated enthalpic and entropic
contributions to the folding free energy of crambin.19

Specifically, we calculated and compared the solvation shell
enthalpies and entropies of the solvated folded conformation
of crambin and a molten-globule-like conformation of this
prototypic globular protein. To directly quantify many-body
solvent correlations, we used the method Per|Mut,20,21 which
employs a mutual information expansion (MIE)22−25

+T S T S T S1 2 (1)

into single-molecule entropies ΔS1 and entropy contributions
ΔS≥2 arising from correlations between pairs and triples of�
mostly nearby�solvent molecules. This entropy decomposi-
tion differs from the one put forward by Ben-Naim and Yu and
Karplus and offers a more direct and microscopically intuitive
interpretation. For example, the single-molecule entropy ΔS1
contribution to the solvation free energy in many cases reflects
direct interactions between the solvent and the solute, whereas
the entropy contributions due to solvent−solvent correlations
provide direct microscopic insights into how the solvent
structure and fluctuations are affected and, in turn, contribute
to the solvation free energy. Hence, these calculations also
offer the chance to test whether entropy changes due to many-
body solvent correlations are canceled by changes in solvent−
solvent interactions.
In our molecular dynamics (MD) simulations,19 the molten-

globule-like conformation of crambin showed many hydro-
phobic residues, which are buried within the folded
conformation, exposed to the solvent. Relative to the native
fold, we observed indeed a marked entropic free energy
contribution to the solvation free energy due to strongly
correlated water molecules in the innermost solvation shells.
Here, we show that this finding is, in fact, perfectly

compatible with the Ben-Naim theorem. Our analysis will,
further, provide a deeper understanding of the contribution of
the solvent response to the solvation free energy and also
clarify the notion that structural changes of the solvent cannot
affect the solvation free energy.12 We will illustrate our
reasoning by a simple Ising model example that can be
exhaustively enumerated as well as by a more realistic example
of a Lennard-Jones particle solvated in liquid argon.

2. THEORY
2.1. Canonical Decomposition. Ben-Naim12−14 has

proven that the change of average solvent−solvent interaction
energies upon solvation is exactly compensated by a
corresponding entropy term, such that there is no net free
energy contribution. Later, Yu and Karplus15 obtained
essentially the same result for the less general case of pairwise
additive solute−solvent and solvent−solvent interactions by
considering a solvation process described by the coupling
parameter λ (λ = 0: not solvated, λ = 1: fully solvated).
In particular, they demonstrated that for a Hamiltonian

= +( ) ( )uv vv (2)

consisting of pairwise solute−solvent (uv) and solvent−solvent
(vv) interactions, the internal energy (ΔU) and entropy (ΔS)
changes can be expressed as
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(4a)

= +S T ST uv vv (4b)

Whereas the internal energy and entropy parts ΔUuv and
TΔSuv only contain solute−solvent interactions uv , the
remaining terms are referred to as solvent−solvent terms, ΔUvv
and TΔSvv, respectively. The important finding by Ben-Naim
and Yu and Karplus is that these two terms, also referred to as
or solvent reorganization terms, are identical and thus cancel in
the net free energy difference

= =F U T S U T Suv uv (5)

which thus only contains the so-called solute−solvent terms.
Note, however, that whereas the interpretation of ΔUvv as

the change of the average solvent−solvent interaction is
straightforward, there is no similarly intuitive microscopic
interpretation for the (canceling) entropy term TΔSvv.
Although it arises canonically as the second term in eq 4a,
and despite the common subscript “solvent−solvent”, ΔSvv
does not describe the entropy change of the solvent due to its
changed ordering. In fact, the separation into solute−solvent
and solvent−solvent interactions does not imply a unique
additive separation of corresponding entropy contributions.
We think that this misconception is the root of long-standing
and widespread confusion.
In particular, the seeming absence of solvent−solvent terms

in the free-energy balance has led to the widely held belief that
the solvent response to the presence of a solute, e.g., solvent
rearrangements such as the Frank and Evans “icebergs”, cannot
contribute as a thermodynamic driving force.14,26

2.2. Mutual Information Expansion. Additionally,
although the two terms ΔSuv and ΔSvv are of course well-
defined, it is misleading to interpret these entropy terms, which
are inherently ensemble properties, as representing the entropy
contribution arising separately from solute−solvent and
solvent−solvent interactions, respectively, as defined in eq 2.
For example, the term ΔSvv in eq 4a contains solute−solvent
interactions uv not only implicitly via ensemble averages but
also explicitly.
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As an alternative, and to gain physical insights into the
solvation process that can be interpreted in a more
straightforward manner, we suggest to use a MIE,22−25 as,
e.g., implemented in the recently developed method Per|
Mut.20,21

Accordingly, the total solvent entropy is decomposed into
single-body entropies, akin to an ideal-gas term, and multibody
correlations

+ +
=

S S i I j k I l m n( ) ( , ) ( , , ) . . .
i

N

j k l m n1
1

( , )

pairs

2
( , , )

triples

3

(6a)

= +S S1 2 (6b)

where S1(i) are the single-body entropies of the (three-
dimensional) probability distributions of molecules 1, ..., N and
I2(j, k) and I3(l, m, n) are the two-body and three-body mutual
information terms of molecule pairs and triples, respectively.
These terms are defined as

= +I j k S j S k S j k( , ) ( ) ( ) ( , )2 (7a)

= + +

+

I l m n S l S m S n

S l m S l n S m n

S l m n

( , , ) ( ) ( ) ( )

( , ) ( , ) ( , )

( , , )

3

(7b)

and represent the entropy change due to two- and three-body
correlations, respectively. In this notation, S(j, k) and S(l, m, n)
are the entropies of the (six- and nine-dimensional) marginal
distributions of the full configuration space density ϱ with
respect to molecule pairs j, k and triples l, m, n, respectively,
e.g.

=
=

xj k d( , )
p

p j p k

N

p
1

, (8)

A full MIE up to the N-body correlation term yields an exact
entropy decomposition. In our numerical approach below,
evaluation of the respective integrals would require sampling
over the full 3N-dimensional configuration space, which is
impractical. We therefore truncated the expansion after the
three-body correlations to obtain a good approximation of
entropy, neglecting higher-order terms. For short-ranged
interactions, these have indeed been demonstrated to be
small.27

3. METHODS
3.1. Ising Model. To assess the solvent response to a solute

(e.g., a protein), as sketched in Figure 1A, we first considered
the simple 4 × 4 subcritical Ising model sketched in Figure 1B.
In this model, each spin σi,j = −1, +1 interacts with its nearest
neighbors with an interaction strength J = 0.2 under periodic
boundary conditions. Here, the spins mimic a solvent, with the
four most center spins (shaded in red) interacting with an
external field λ, which mimics the interaction with a solute.
Note that because the solute is described purely by these
interactions, the Ising model depicted in Figure 1B does not
contain any explicit solute degrees of freedom.
Accordingly, the Hamiltonian reads

= +x x x( ) ( ) ( )vv uv (9a)

= J 4i j i j i j
n.n.

, ,
shell

,
(9b)

where the first sum runs over all nearest neighbors, and the
second sum runs over the spins shaded in red (i.e., the
“solvation shell”, the solute is not shown in Figure 1B). The
probability of each state x ∈ X = [−1, +1]4×4 reads

=xP
Z

( )
1

e x k T( )/ B

(10)

with the partition function Z chosen such that ∑x∈XP(x) = 1.
The entropy S and the average solvent−solvent interaction

energy therefore read

= x xS k T P P( )log ( )
x X

B
(11)

= x xU P( ) ( )
x X

vv vv
(12)

Figure 1. (A) Sketch of a solute (black) in water (gray angles), where
the solvation shell (red area) interacts directly with the protein. (B)
Sketch of a 4 × 4 Ising model, serving as a simplified model of solute−
solvent/solvent−solvent interactions. Here, spins (gray arrows)
represent water molecules. The four spins shaded in red interact
with the solute; this interaction is described by an external field λ that
acts on the four spins. (C) As a more realistic model system, argon-
type atoms (red) are coupled to a solute Lennard-Jones sphere
(yellow). On the left (λ = 0), the solute is decoupled from the argon
solvent; on the right (λ = 1), the solute is fully solvated.
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Following Yu and Karplus,15 all solute−solvent and solvent−
solvent entropy changes were calculated according to eq 4a.
These values are therefore subject to a small integration error
due to the required numerical integration, for which we used
251 discrete λ-intermediates. For the Ising model, all
calculations were carried out with unitless energies, i.e., kB =
T = β = 1.
3.2. Argon. 3.2.1. MD Simulations. To quantify the

response of an argon-type liquid to a Lennard-Jones solute,
two systems were simulated: an unsolvated system containing
512 argon-type atoms and a solvated system with an additional
immobilized van der Waals sphere as a “solute”. All MD
simulations were carried out using the software package
Gromacs 2020.628−32 with a leapfrog integrator with a 2 fs
time step. The van der Waals parameters of argon were taken
from the CHARMM36m force field.33−35 The Lennard-
Jones36 parameters (particle size σ and potential depth ϵ) for
the model solute were chosen as twice as those of argon to
enhance the statistical significance of average energy differ-
ences. All van der Waals interactions were switched between
1.0 and 1.2 nm, and no dispersion correction was applied. To
immobilize the solute at the center of the simulation box,
freeze-options within Gromacs were used. During all
simulation runs, the temperature was kept at 120 K using
the V-rescale thermostat37 with a time constant of 0.1 ps.
The unsolvated (pure argon) system was equilibrated at 1

bar pressure in a 20 ns NPT-run using the Berendsen
barostat,38 resulting in a (3.073 nm)3 cubic simulation box.
The second, solvated system was prepared by adding the solute
to the simulation box and allowing for a further equilibration,
lasting 10 ns under NVT conditions. For both systems,
production runs, each lasting 4 μs, were carried out under NVT
conditions. For subsequent analysis, configurations were stored
every 10 ps, resulting in trajectories consisting of 4 × 105
frames each.
3.2.2. Entropy Calculation. Entropy contributions were

calculated using the method Per|Mut,20,21 which utilizes a
permutation reduction39,40 and a MIE22−25 into one-, two-,
and three-body correlations. For permutation reduction, 50
different simulation snapshots were randomly selected as
reference structures, and a MIE was carried out using each of
the permutationally reduced trajectories. In the MIE, the
mutual information between all pairs of argon atoms was taken
into account; triple-wise mutual information terms were cut off
at an average distance of 0.5 nm after permutation
reduction.20,21 All MIE orders were calculated using a k-
nearest-neighbor algorithm with a value of k = 1.
From the resulting entropy difference ΔSMIE between the

unsolvated system and the solvated system, the free energy
difference ΔFMIE = ΔU − TΔSMIE was calculated, where the
internal energy difference ΔU was obtained directly from the
average interaction energies in the simulation runs.
Solute−solvent and solvent−solvent entropy differences

ΔSuv and ΔSvv, respectively, were calculated by thermodynamic
integration (TI) from the unsolvated state to the solvated state
using 200 equidistant windows, each lasting 200 ns. As a
control for the Per|Mut results, the total entropy difference
ΔSTI = ΔSuv + ΔSvv and the free energy change

=F dTI
0

1

(13)

were calculated using standard TI.

Errors of the internal energies were calculated as
N/ 1U f , where σU are the standard deviations of the

respective interaction energies from Nf = 400 × 103 simulation
frames. Due to the long interval of 10 ps between frames, these
were considered statistically independent. Similarly, Per|Mut
errors were estimated as the standard errors resulting from the
50 permutationally reduced simulation trajectories. TI errors
were estimated from the difference between two independent
sets of TI simulation runs with identical input parameters but
different initial (random) velocities but turned out to be
negligible for all further analyses.

4. RESULTS AND DISCUSSION
To investigate the seeming contradiction between the Ben-
Naim theorem and the free energy effects of increased solvent
correlations observed for the crambin19 solvent shell, we
calculated the relevant contributions of the solvent response to
the solvation free energy for two simple model systems, for
which sampling errors are either absent or can be neglected.
Specifically, we will compare all free energy contributions of
the Yu et al. decomposition (eqs 3a−5) with the MIE (eq 1).
We will first consider an idealized solvation process for an

Ising model, for which all relevant quantities can be
exhaustively enumerated, such that the results are exact to
numerical precision. Subsequently, we will consider a liquid
argon-type Lennard-Jones system with a van der Waals solute,
the relaxation times of which are short with respect to
simulation times, such that for this, more realistic system
sampling errors can be assumed to be very small with respect
to the relevant energy and entropy differences.
4.1. Ising Model. As a simple illustrative model of a solute

in a solvent (Figure 1A), we consider the 4 × 4 subcritical Ising
model shown in Figure 1B. Here, each spin represents a
solvent molecule that interacts with its nearest neighbors. The
effects of a solute are modeled by an external field with
strength λ that acts on the “solvation shell” (red), consisting of
the four spins at the center.
Figure 2 shows the exact relevant thermodynamic quantities

as a function of the coupling parameter λ, calculated by full
enumeration as described in Section 3.1. As expected, with the
increase in coupling to the solvent, the total entropic free
energy contribution −TSTI (black line) becomes less favorable
(i.e., it increases) and eventually saturates at an entropy
difference of −TΔSTI = 2.48 between fully solvated (λ = 1) and
fully decoupled (λ = 0). This contribution is dominated by the
unfavorable solute−solvent contribution −TΔSuv = 3.70
(green dashed line), which is partially compensated by the
favorable solvent−solvent contribution −TΔSvv = −1.22
(green dashed-dotted line).
As shown by the dashed-dotted red line in Figure 2, the

average solvent−solvent interaction energies Uvv increase for
increasing coupling parameter λ and thus contribute
unfavorably to the free energy change by ΔUvv = 1.22. Fully
in line with the Ben-Naim theorem (eq 5), Uvv is indeed
precisely compensated by −TSvv, such that ΔUvv − TΔSvv = 0
and, hence, ΔF = ΔUuv − TΔSuv (ΔUuv = −15.98, not shown
in Figure 2).
Does this finding imply that solvent−solvent correlations do

not contribute to the solvation free energy? To answer this
question, consider the above MIE of entropy, which directly
quantifies these correlations. The single-body term −TS1
(dashed blue line) underestimates the entropy on average by
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0.53 units and contributes −TΔS1 = 2.82 to the overall entropy
change. Inclusion of the two- and three-body correlation terms
(−TΔSMIE, solid blue line) improves the approximation
markedly, with an average deviation from the exact values
below 0.13 units. The correlation terms −TS≥2 (dashed-dotted
light blue line) add a small favorable contribution of −TΔS≥2 =
−0.07 to the overall MIE entropic free energy change (blue
solid line) of −TΔSMIE = 2.75.
Crucially, the term −TSvv differs from the solvent−solvent

correlations −TS≥2 both by definition and, indeed, also
numerically, as shown in Figure 2. As a result, −TSuv also
differs from −TS1, and the entropy change due to solvent
correlations −TΔS≥2 is not compensated by any canonical
internal energy term. This simple example illustrates that,
generally, solvent correlations do contribute to the solvation
free energy; it also clarifies why this finding is not in conflict
with the Ben-Naim theorem.
4.2. Argon. Is this subtle but important distinction between

−TSvv and the actual many-body contribution to the solvation
entropy, −TS≥2, also relevant for more realistic systems? To
address this question, we carried out MD simulations of a
system comprising 512 argon-type atoms and an immobilized
Lennard-Jones “solute”, as described in Section 3.2 (see also
Figure 1C). Here, we calculated the free energy change of
solvation, as well as the relevant enthalpic and entropic
contributions using both Per|Mut and thermodynamic
integration.
As shown in Figure 3, the internal energy change ΔU upon

solvation is favorable and totals −9.2 kJ mol−1, to which
solvent−solute interactions (ΔUuv) contribute −9.5 kJ mol−1

and solvent−solvent interactions (ΔUvv) contribute 0.3 kJ
mol−1. In line with the Ben-Naim theorem, the latter
contribution is exactly compensated by −TΔSvv = −0.3 kJ
mol−1, which, also for this system, might suggest that the

solvent−solvent interactions and correlations, taken together,
do not contribute to the solvation free energy.
However, the many-body entropy contribution −TΔS≥2 =

(2.4 ± 0.4) kJ mol−1, calculated using Per|Mut and the MIE, is
substantial and contributes a significant fraction to the
solvation entropy −TΔSMIE = (7.6 ± 0.4) kJ mol−1, which is
dominated by the reduced volume of the individual argon
atoms, −TΔS1 = (5.3 ± 0.1) kJ mol−1.
To test our assumption that four-body and higher

correlations not included within −TΔSMIE are sufficiently
small, we also calculated the relevant entropy terms using TI
(green). Indeed, the similar total entropy change of −TΔSTI =
6.6 kJ mol−1 supports this assumption and shows that the
contribution of the higher correlations to the solvation entropy
is markedly smaller than the MIE estimate. Also for this more
realistic system, the entropy change due to solute−solvent
interactions (−TΔSuv = 6.9 kJ mol−1) dominates, and −TΔSvv
does not even describe the correct sign of the actual solvent−
solvent correlation contribution to the solvation free energy.
The remaining difference of ca. 1 kJ mol−1 between the MIE
and TI solvation entropies is also reflected in the respective
total free energies ΔFMIE = ΔU − TΔSMIE = −1.5 kJ mol−1 and
ΔFTI = −2.5 kJ mol−1, respectively, underscoring that this
difference is mainly due to the truncated MIE expansion rather
than sampling uncertainties.
Similar to our findings for the above Ising model, also for the

more realistic argon-type system, the two possible entropy
decompositions differ significantly. Whereas the small size of
the two solvent−solvent terms ΔUvv and − TΔSvv�and in
particular their mutual cancellation�seem to show that the
solvation of this Lennard-Jones particle is unaffected by the
reaction of the solvent, the actual solvent−solvent entropy
contributions are substantial and not compensated by any
canonical internal energy term.
We conclude that also for the solvation of a Lennard-Jones

particle in a Lennard-Jones fluid, the induced solvent
reorganization�defined via solvent entropies�contributes
markedly to the solvation free energy. We note that the solute

Figure 2. Thermodynamic quantities of the Ising model as a function
of the external field λ. Individual entropic (green and blue) and
enthalpic (red) contributions are shown as dashed or dashed-dotted
lines, and the respective sums and total entropies are shown as solid
lines. For reference, the precise entropy contribution (−TSTI) is
shown as a solid black line. Entropies obtained via Per|Mut MIE are
colored blue; entropies representing the Ben-Naim decomposition are
shown in green. Labels mark the individual contributions discussed in
the text. For a better visual representation, Uvv and −TS≥2 are shifted
by 6.61 and 8.71 units, respectively.

Figure 3. Solvation free energy contributions (in kJ mol−1) of the
fixed Lennard-Jones solute in an argon-type liquid. Red bars denote
the internal energy change and its contributions. Colors correspond to
those in Figure 2: blue and green bars denote the entropy change and
its contributions, calculated using Per|Mut and TI, respectively.
Purple bars show the overall free energy change, as calculated using
Per|Mut and TI. Estimated sampling uncertainties are shown as small
black bars. Within each colored group, the lowest bar is the sum of the
upper 2 bars, as indicated by the horizontal black summation lines.
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has been inserted in the NVT ensemble, i.e., with the volume
kept constant, which may increase the structural response of
the solvent to the insertion of the solute compared to a
constant pressure simulation and thus enhance the solvent
reorganization terms ΔUvv and −TΔSvv.

5. CONCLUSIONS
We pointed out that the entropy decomposition by Ben-Naim
and Yu et al. into a contribution Suv from solute−solvent
interactions and a remaining contribution (Svv) as defined in eq
4a, differs conceptually from direct evaluation�e.g., via a
MIE�of entropic solvent−solvent correlation contributions to
the solvation free energy. In particular, the term “solvent-
reorganization entropy” for ΔSvv, although canonically defined,
may create the wrong impression that any solvent change due
to the presence of a solute, however defined, cannot contribute
to the net free energy.
Two examples served to illustrate the solution of this

seeming paradox. First, a simple semianalytical Ising model,
which permitted exhaustive enumeration, establishes that the
conceptual difference between ΔSvv and ΔS≥2 actually gives
rise to marked numerical differences. Second, our MD
simulations of solvation within a Lennard-Jones liquid show
that this distinction is also relevant for a more realistic
solvation system. For both systems, ΔSvv is exactly
compensated by the change of average solvent−solvent
interactions (ΔUvv), as required by Ben-Naim’s theorem.
In more general terms, our examples also illustrate an

alternative decomposition of entropic contributions to the
solvation free energy, which is more accessible to a
microscopic interpretation and provides insight into which
entropy changes drive or oppose solvation. In particular, the
single-molecule entropy difference ΔS1 describes how
restricted spatial or (in the case of, e.g., water solvent)
orientational mobility of the solvent molecules due to solute−
solvent interactions opposes solvation. In this sense, −TΔS1 is
the natural counterpart of ΔUuv. In contrast, the higher order
terms −TΔS≥2 = −TΔS2 − TΔS3 − ... quantify how (typically)
increased translational and orientational solvent−solvent
correlations, as, e.g., described by the early “iceberg”
hypothesis, reduce the solvent shell entropy and, hence, also
oppose solvation.
For the two examples discussed here, and also for a solvated

globular protein,19 the pair correlation term ΔS2 dominates the
solvent−solvent correlations ΔS≥2. Along the same lines,
therefore, −TΔS≥2 can be seen as the natural counterpart of
ΔUvv, and in fact actually represents what the vv-subscript of
−TΔSvv, perhaps misleadingly, seems to suggest.
We hope our explanations and examples will contribute to

resolving a long-standing controversy and the resulting
widespread confusion. Fully in line with Ben-Naim’s theorem,
solvent−solvent correlations can�and generally do�contrib-
ute markedly to the overall free energy of solvation, thus
underscoring the need for an improved understanding of the
“iceberg”-type ordering of solvent shells, in particular near
complex macromolecular solutes and surfaces.
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