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1. INTRODUCTION

Interaction between biology, physics, and chemistry is presently providing
a window into an exciting new era of bioinspired nanotechnology. In
particular, photobiological processes, like vision or photosynthesis, in
which sunlight is used as the source of energy to bring about a chemical
reaction, provide valuable templates to create tools for biomolecular ima-
ging, information technology, and renewable energy. Mimicking photobio-
logical processes requires a complete understanding of the underlying
molecular dynamics (MD). As the relevant time and spatial resolution are
notoriously hard to access experimentally, computer simulations are the
methods of choice to deepen our understanding of how proteins have
evolved to mediate photochemical reactions and to use these insights to
create devices that mimic biological functions. In this chapter, we present
the approach we use to perform excited state MD simulations of photo-
induced processes in biological systems. We start by reviewing the theore-
tical concepts of photochemical reactions. We then discuss how we have
used these concepts to create a practical simulation methodology. We con-
clude this chapter with a short review of selected applications on photo-
biological systems. These simulations not only reveal the detailed sequence
of events that follow photon absorption, but also demonstrate how the
biological environment controls the excited state dynamics.

2. THEORY

The size and complexity of a typical photobiological system, together with
the timescales that must be reached, necessitate the use of classical MD for
the nuclear degrees of freedom. In MD simulations Newton’s equations of
motion are solved numerically to obtain a trajectory of the dynamics of a
mo!ecule over a period of time. To model the electronic rearrangement upon
excitation, a quantum mechanical (QM) description is required for those
parts of the system that are involved in photon absorption. For the remain-
Fler, a simple molecular mechanics (MM) forcefield model suffices. The
interactions in the systems are thus computed within a hybrid QM/ MM
framework.

To model the dynamics of a photoactivated process, the ground and
excited state potential energy surfaces must be described accurately. As we
shqw schematically in Figure 6.1, a photochemical reaction starts in the
e>.(c1ted state (5,) but ends in the ground state (So) after radiationless decay
v1a‘the conical intersection seam. To model the deactivation process, we use
a diabatic surface-hopping algorithm in our MD simulations that allows the

traleﬁt(g'y to hop between the surfaces when the intersection seam IS
reached.
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Figure 6.1 Schematic overview of a photochemical reaction pathway (dashed line). After
photon absorption, evolution takes place on the excited state potential energy surface
(red) until the system hits the S;/S, intersection seam. At the intersection, a radiationless
transition to the ground state occurs (blue). After the decay, the system continues evolving
in the ground state. Please refer online version for color image.

2.1. Born—Oppenheimer approximation

The aim in computational chemistry is to find and interpret the solution for
the many-body Schrédinger equation of chemical systems:

Hlt = EV; (1)

with H the system’s Hamilton operator, or Hamiltonian, that returns the
total energy E of the system when operating on the many-body wavefunc-
tion W. As in classical mechanics, the Hamiltonian is defined as the sum of
the kinetic T and potential energy V:

HwFlidl )

From the wavefunction ¥, all static properties of the system can be derived.
Dynamic information is obtained by integrating the time-dependent
Schrédinger equation:
g 3
ih &‘If =HY, (3)
with i the Planck constant divided by 2. Unfortunately, an exact solution
exists only if there are at most two interacting particles m tl}e system.
Solving the equations for any larger system requires approxunanons.
Since biological molecules are mainly composed of first and second row
elements, the electronic velocities are sufficiently low for relativistic e_ffec?s
to be ignored. Within this approximation, the nonrelativistic Hamiltonian is
given by

BT 1T UER) @)
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where T, and Ty are the operators of the kinetic energy of the electrons and
the nuclei, respectively, and U(r,R) is the total potential energy of the
electrons and nuclei together. The vector r denotes the set of electronic
coordinates and the vector R stands for the nuclear coordinates.

The next step in reducing the complexity is to assume that the dynamics
of the electrons on the one hand and nuclei on the other are decoupled. This
approximation, proposed by Born and Oppenheimer, is based on the large
mass difference between electrons and nuclei. As a consequence, the much
lighter electrons adapt instantaneously to displacements of the nuclei. Elec-
trons “see” nuclei standing still, whereas nuclei move on potential energy
landscapes created instantly by the faster electrons. Within the Born-
Oppenheimer approximation, the electronic and nuclear degrees of freedom
can thus be treated independently.

First, the Schrédinger equation is solved for electrons moving in a frame-
work of fixed nuclei. Thus, the nuclear kinetic energy operator (Ty) is
omitted from the full Hamiltonian [Eq. (4)] to yield

H® = T.+ U(r,R), (5)

where the superscript e indicates the electronic Hamiltonian. The electronic
wavefunctions are the eigenfunctions of this Hamiltonian

H;(r;R) = Vi(R)¢;(r; R), (6)

with ¢4(r;R) and Vi(R) as the electronic wavefunctions and their electronic
energies, respectively, that both depend parametrically on the nuclear coor-
dinates. The wavefunctions are the adiabatic electronic states, representing
the electronic ground state (i =0), excited state (i =1), second excited state
(=2), and so on. How these wavefunctions are obtained in practical com-
putations is the subject of modern quantum chemistry [1] and is briefly
discussed below in Section 2.5.

The adiabatic wavefunctions can be made orthonormal, that is,

i) = [ e Ry e Ryde = 8, )

where the Dirac bracket notation ({[}) has been introduced that will be used
throughout the text and where §;; is the Kronecker delta function, which is 1
if i=j and 0 otherwise.

Within .the Born-Oppenheimer approximation, the adiabatic electronic
states provide a complete bfiSiS to expand the molecular wavefunction in

‘I’(l‘, R) = ZXn (R)'l/),, (l‘; R), (8)
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where the expansion coefficients x,(R) are the nuclear wavefunctions.
Substituting the expression for the molecular wavefunction in the time-
independent Schrédinger equation [Eq. (1)] and multiplying by the adia-
batic electronic wavefunction ¢} (r; R) from the left, followed by integration
over the electronic coordinates r leads to the following set of coupled
equations:

> Hy(R)x;(R) = ER)x;(R), 9)
i
with
H;(R) = (y;(1; R)|H|¢;(r; R)) = (¢i(5;R)|Tnly(;R)) + Vi(R)&;.  (10)

The nuclear kinetic energy operator is defined as

hZ
= Y g Vi (1)

in which Mj is the mass of nucleus k and the sum runs over all nuclei. Using
this relation, Eq. (10) can be rewritten as follows [2}:

Hi(R) = [Tn + Vi(R)]6; — Aj(R). (12)

The nonadiabatic operator elements A;j(R) are defined as
A4(R) =Y Fi(R)Vg, + G4(R), (13)

x
12

Fj(R) = 27 (05 R) Ve, [y (1 R), (14)
” 2 (R (15)

GiR) = 3z (h(ERIVR4(x R

In contrast to H® [Eg. (5)], in which Ty was omitted, H;; is not diagonal
on the basis of the adiabatic electronic wavefunctions (1;). The individual
electronic states are thus coupled via nuclear motions. Nonadiabatic
coupling is the key player in a photochemical reaction, as we will show
below.

In the limit that the electronic wavefunctions vary very slowly with
the nuclear dynamics, the nonadiabatic operators F5(R) and G;(R) are
Vanishingly small and can be safely neglected. Thus, the crux of the Born-
Oppenheimer approximation is that H;; is assumed to be diagonal:

H,']'(R) =[Tn+ Vi(R)]‘sij~ (16)
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Under this assumption, the total molecular wavefunction becomes a pro-
duct of a single nuclear and a single electronic wavefunction:

PR, 1) = x;(R)¢i(r; R), (17)

which implies that the nuclei move on a single electronic potential energy
surface V(R) of a given electronic state 7, and the electronic wavefunction
remains in that state. The Born-Oppenheimer approximation not only
reduces the computational complexity of the equations that have to be
solved, but also provides a conceptually intuitive picture of molecular
structure and dynamics.

2.2. Conical intersections

The Born-Oppenheimer is valid as long as the separation between the
electronic energy levels is large compared to the separation between the
vibrational energy levels. Since this is true for almost all ground state
chemical processes, the Born-Oppenheimer provides the basis for modern
quantum chemistry. For photochemical processes, however, this is usually
not true.

During a photochemical reaction, the system samples regions of config-
uration space, where the energy gaps between electronic states are of the
same magnitude as the energy gaps between the vibrational states of the
nuclei. Under such conditions, resonance will occur between nuclear vibra-
tions and electronic transitions. The populations of the adiabatic wavefunc-
tions become strongly dependent on the nuclear dynamics and the
nonadiabatic coupling operator [A, Eq. (13)] can no longer be ignored.
Thus, in regions of strong non-adiabatic coupling the Born-Oppenheimer
approximation breaks down. Nuclear dynamics induces population transfer
between different electronic states. Furthermore, if the coupling is strong
enough, the adiabatic potential energy surfaces can even intersect. These
surface crossings provide efficient funnels for radiationless deactivation of
the excited state and therefore play a crucial role in photochemistry.

In theory, all electronic states ¥i(r;R) are involved in the nonadiabatic
coupling. In practice, however, there is only significant coupling between
electronic states that have comparable energies. Therefore, only a small
number of states needs to be included in the nonadiabatic coupling matrix
A, which considerably reduces its dimensionality.

The nonadiabatic coupling operators A;; are nonlocal derivative opera-
t(t)rf th[a;]depend inversely on the energy gap between the coupled adiabatic
states [3]:

2

Fi(R) = 1 (44(e:R) Ve, 5, R)) = 1= S RIVRHTER)) g

M Vi—Vi
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When the gap (V; — V)) gets smaller, the coupling increases, and the nuclear
wavefunction that is initially on one surface will spread to the other surface
without losing energy. The coupling thus induces a radiationless transition
between the electronic states.

If the gap vanishes, that is, V;— V;=0, the coupling becomes infinite.
Due to the nonlocal nature of the coupling matrix elements in the adiabatic
representation, it is more convenient to switch to a diabatic representation,
in which the nonadiabatic coupling operator is a local, potential-like
operator. The switch to the diabatic wavefunctions ¢ is achieved by a
unitary transformation of the adiabatic wavefunctions ¢ at each point in
space [3]:

¢ =S(R)y. (19)
In the diabatic representation the complete Hamiltonian [Eq. (12)] becomes
H;(R) = Tnéij + Wi(R), (20)

and the molecular Schrédinger equation [Eq. (12)] can be written in matrix
notation as

Hy = [Tn1+W(R)[y = Ey, (21)

in which 1 is the identity matrix and W(R) is the diabatic potential energy
matrix, which, in contrast to the adiabatic potential matrix V(R), contains
only local terms.

To illustrate the concept of the surface crossing, we consider a molecule
in which there is coupling between two diabatic states A and B, but not to
any other state. We can expand the potential matrix elements in a Taylor
series around an arbitrary point Ry:

WR-Ry) = WO L w4 W2 4 ... , (22)

At Ry, we can choose the diabatic and adiabatic states to be equal. Then,
the zeroth-order matrix, W, is a diagonal matrix in which the elements
correspond to the energies E4 and Ep of the diabatic states UfA' and wB'at Ry,
which, by our choice of origin, are identical to the adiabatic energies V;
and V,:

Eg—Ea

~Tatie o EeE TV
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For very small displacements AR around Ry, the Taylor expansion in
Eq. (22) can be truncated after the first-order term

—lﬁx-AR xAB . AR
X-AR 2

w(l) 1
2 x*®-AR 3K AR

: (24)

in which we have introduced linear potential constants that are defined as

ox VR(EB_EA)|R0‘

KA = Vr(palH|op) Iy, (25)
A = Vr(Ea +Ep)lg, -

We can choose Ry to be the point of degeneracy, so that E4 and Eg are equal
at Ry and W' is 0. The adiabatic potential energy surfaces V; and V, are
obtained by diagonalizing the diabatic potential matrix W. Thus, for the
two-state system considered here,

(Tl

1 1 2
—_X- + = . AB .
Viz 2)\ AR_Z\/[SK AR[" + 4[xAB - AR]. (26)

The necessary condition for a crossing between the two potential energy
surfaces at Ry is that the two electronic energies are identical. Therefore, two
conditions need to be fulfilled simultaneously:

dx-AR = 0,
x"B.AR = 0. @)
Thus, to first order, the degeneracy is lifted in the two-dimensional
space spanned by the vectors 6x and x*P, which are the gradient
difference vector and derivative coupling vector, respectively. The
space spanned by these two vectors is often referred to as the branching
space, or g-h plane. Furthermore, as is evident from Eq. (26) and illu-
strated in Figure 6.2, the topology of the surfaces is that of a double
cone, with the point of degeneracy at the apex. Orthogonal to the two-
dimensional branching space exists the so-called intersection space (or
seam space), in which the energies of the two states remain degenerate
to first order. In a molecule with N internal degrees of freedom, the
Intersection space thus forms an N — 2-dimensional seam, each point of
which is a conical intersection. If a molecule has less than two degrees
of freedom, the two conditions for degeneracy [Eq. (27)] cannot be
simultaneously fulfilled. In diatomic molecules, for example, electronic
states of same symmetry cannot cross, which led Von Neumann and
Wigner to propose their famous noncrossing rule [4].
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Figure 6.2 A conical intersection plotted in the two-dimensional branching space that is
spanned by the gradient difference vector (g) and the derivative coupling vector (h).
Motion away from the intersection in the g—h plane lifts the degeneracy between the two
electronic states $; and So. The dotted line shows a path of a nuclear trajectory passing
from one electronic state (S;) to another (So) through the intersection funnel.

The concept of the intersection seam is illustrated in Figure 6.3 for a
hypothetical triatomic molecule. In this molecule there are three internal
degrees of freedom: two bond lengths (x; and x,) and one angle (e). Since
two degrees of freedom are required to span the branching space, there is
only one degree of freedom available for the intersection seam. For the sake
of simplicity, we let the branching space coordinates (i.e., the gradient
difference and derivative coupling vectors) coincide with the two bond
length variables x; and x, in our molecule. Note that in real triatomic
molecules, the branching space coordinates can be linear combinations of
the three internal degrees of freedom.

Conical intersection  Intersection seam Intersection seam

Figure 63 Surface crossing between two potential energy surfaces S, and S in a
hypothetical triatomic molecule (left). We let x, and x, be parallel to the gradient
difference vector and the derivative coupling vector, respectively, and o be the remaining
degree of freedom. When projected onto the branching space spanned by x; and x,, the
surfaces of S, and S, intersect in a single point, the conical intersection. In the two other
subspaces, spanned by either x, and o, or by x; and a, there is an intersection line between
the surfaces. In the second plot x; and in the third x, are assumed to be at their conical
intersection coordinates.
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In the first plot of Figure 6.3 the two adiabatic potential energy surfaces
(denoted Sy and S,) are projected onto the branching space. The surfaces
adopt a double cone shape with a single intersection point at the apex. Any
displacement away from the apex in either the x; or x, coordinate lifts the
degeneracy.

The second plot shows the two surfaces in the subspace spanned by the
derivative coupling vector x, and the third independent degree of freedom,
the bond angle . The gradient difference vector x; is kept fixed at the
conical intersection. Therefore, the only coordinate left to lift the degeneracy
is x,. If the latter is at the conical intersection as well, the surfaces intersect
irrespective of the value of the angle variable (a). The intersection seam is
thus a one-dimensional line that is parallel to .

The third plot shows the projection of the two surfaces onto the subspace
spanned by the gradient difference vector x; and the bond angle variable a.
Now the derivative coupling vector x; is constrained to be at the conical
intersection. Under this condition, only x; can lift the degeneracy and the
surfaces intersect along a seam parallel to a.

The conical intersection has a number of peculiar characteristics. For
instance, if we consider a small displacement q away from the cone tip in
the branching plane, the diabatic energy matrix U, p becomes

Haa(q) Has(q) —~AH(q) Has(q)
Uga = = 8
as(d) (HAB(q) HBB(q)) St ( Hap(q) AH(q) )’ )

with [see Eq. (24)]

AH(q) = HBB(q);HAA(q) ~ bk-q
Hap(g) = x*8.q, (29)
Sq = Hss(q) + Haa(q)-

2

The mat.rix Ua 5(q) is the two-state Hamiltonian matrix defined on the basis
of -the eigenvectors at the reference point R,, at which the diabatic and
adiabatic bases are identical. The diabatic potential matrix Uag(q) can

be diagonalized by the rotation matrix T(q) [5], to obtain the adiabatic
energies V; ,
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T(q) = ( cosff(q)]  —sin(é(q)] ) (30)
sin[f(q)]  cos[f(q)]
From Eq. (29), the rotation angle 6(q) is defined as [5-10]:

ZHAB(q)}
AH(q)

f(q) = %arctan[

1 2x"B -
:—arctan[ X qJ

2 ox-q
1
= Earctan[ﬂ,

(31)

where we have introduced the scaled coordinates x and y. Replacing these
scaled coordinates by polar coordinates r and ¢

r= JETR

2y } | (32)

arctan| —
x

i

¢

yields the following expression for the rotation angle:

O(Hxs, AH) =5, (33)
Thus, a simple relationship exists between the polar angle (¢), which
defines a rotation around the apex of the cone in the branching space,
and the mixing angle (§) for the diabatic states (¢a,p). Since the extent
of mixing depends only on the polar angle ¢ and not on the radius r, it is
constant along any straight line that starts from the apex of the double
cone,

Because of this relationship, the adiabatic wavefunction changes sign
upon a complete rotation around the apex of the cone in the branching
Space. This is demonstrated by comparing the wavefunctions at ¢ = ¢y and
P+ 2. Substituting Eq. (33) into the rotation matrix [Eq. (30)] gives the
following expression for the adiabatic states:
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and

Y, = sin [%Q] @ +cos F;—O} ©B- (35)

If we substitute ¢ =¢p+ 27, we see that the adiabatic wavefunction has
indeed changed sign after the 360° rotation:

Y = COS[%;ZW}WA —Sm[%——gz—ﬂ}‘%
6
sl
= -

Because single valuedness of the wavefunction is one of the basic postulates
of quantum mechanics, this result implies that the conical intersection isa
singularity. This singularity is a consequence of the separation between
electronic and nuclear degrees of freedom, which, as we have seen, is not
valid near a surface crossing. Thus, the singularity only exists for the
adiabatic electronic wavefunction and must be remedied by the nuclear
wavefunction, so that the total molecular wavefunction is a single-valued
function. Furthermore, as illustrated schematically in Figure 6.4, rotation

Figure 6.4  In the branching space (x.y), points lying on a circle centered at the apex of the
double cone and with a small radius r are diabatically related. If we select a point on oné of
the surfaces and move it to the opposite side of the circle (¢ — ¢ + ), its wavefunction
becomes equal to the wavefunction of the other surface at the original position. If we

complete the circle, the point is back at its original position, but its wavefunction has
changed sign (not shown, see text).
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by 90° permutes the order of the electronic states, as is demonstrated by
substituting 6 + 7 into Eq. (33):

N =cos{¢0;—7r]<pA—sin[@¥}pB

ZSin[%JcpA—cos[%}pB (37)

= —1.

As we will show in Section 2.3, this characteristic of the conical intersection
can be used to detect the time step at which the seam is passed in a classical
MD simulation of a photochemical reaction.

The conical intersection seam is the central mechanistic feature in a
photochemical reaction. The conical intersection provides a funnel for
efficient radiationless decay between electronic states (Figure 6.2). To
illustrate the relationship between the surface crossing and photochemical
reactivity, we draw a parallel with the transition state in ground state
chemistry. The transition state forms the bottleneck through which the
reaction must pass on its way from reactants to products. A transition
state separates the reactant and product energy minima along the reaction
path. A conical intersection also forms a bottleneck that separates the
excited state branch of the reaction path from the ground state branch.
The crucial difference between conical intersections and transition states is
that, while the transition state must connect the reactant minimum to a
single product minimum via a single reaction path, an intersection is a
spike on the ground state energy surface and thus connects the excited
state reactant to two or more products on the ground state via several
reaction paths.

23. Excited state molecular dynamics

Photochemical reactions start in the excited state (S;) but end in the ground
state (Sy, Figure 6.1). To model the dynamics of such processes, we need a
method to accurately compute the ground and excited state potential energy
surfaces. In addition, we need an algorithm that models the radiationless
transitions between the surfaces in a manner that is consistent with quan-
tum mechanics.

If a sufficiently accurate description of the adiabatic Born-Oppenheimer
Potential energy surfaces is available, nuclear dynamics can be computed'by
numerically integrating either the time-dependent Schrédinger equation
[Eq. (3)] or Newton’s equations of motion. In the first case, quantum
mechanics is used to follow the dynamics of nuclear wavepackets [x»(R),
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Eq. (9)], evolving on the electronic potential energy surfaces. With this
approach transitions between surfaces near or at conical intersections can
be described correctly. A wavepacket traveling through or near an intersec-
tion spawns new packets on both surfaces. The transfer probability is con-
trolled by the nonadiabatic coupling elements. At the conical intersection,
the coupling has its maximal strength, resulting in an efficient transfer of the
complete wavepacket to the lower surface.

A requirement for wavepacket dynamics is that the relevant potential
energy surfaces have been computed beforehand. As the computational
costs associated with precomputing these surfaces increases rapidly with
the number of coordinates in the system, wavepacket dynamics is restricted
to small isolated molecules. Alternatively, the multidimensional configura-
tion space can be reduced to a lower dimensional subspace in which quan-
tum dynamics is possible [11]. However, choosing suitable coordinates is
difficult and requires averaging over the remaining degrees of freedom.
Furthermore, the choice of the coordinates can strongly bias the outcome
of a simulation. Therefore, for photobiological problems, the size and
complexity of the systems involved severely limit the applicability of wave-
packet simulations.

Alternatively, we can decide to ignore the QM character of the nuclei
altogether and use Newton's equations of motion to compute MD trajec-
tories. In terms of computational effort, classical MD is orders of magnitude
more efficient than wavepacket dynamics and is therefore routinely used for
computing the time evolution of large biomolecular systems. Classical
mechanics has the additional advantage that the potential energy surface
can be computed on the fly. Forces are evaluated for the geometry at time
step t and used to compute the geometry at the next time step ¢+ At. Thus,
only at the configurations sampled by the classical trajectory, electronic
structure calculations are required. For systems with many degrees of
freedom, for which computing potential energy surfaces beforehand is not
possible, the on-the-fly strategy is the only option for performing MD
simulations.

Classical mechanics provides a computationally cheap alternative to
Wavepaert dynamics. However, because quantum effects are ignored,
POP_Ulahon transfer cannot occur and classical trajectories are restricted to
a smglfe potential energy surface. Therefore, in contrast to wavepacket
dynamics, radiationless transitions do not take place spontaneously.
Instead, a binary decision to jump to a different electronic surface must be
made at every time step in a single trajectory. The criterion for switching
between electronic states must result in a distribution of state populations
over very many trajectories that reflects the populations of a full QM treat-
ment. Furthermore, in contrast to wavepacket dynamics, classical trajec-
tories do not capture coherence effects. When a nuclear wavepacket
originally traveling on a single adiabatic potential energy surface
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encounters a crossing, it typically produces two subpackets, or offsprings,
one on each surface [12]. After such spawning event, the new wavepackets
will still interfere with each other. However, as these subpackets travel on
different surfaces and often have different initial velocities on their respec-
tive surfaces, they are well separated in phase space and it is highly unlikely
that they will encounter each other again, especially in high-dimensional
systems, such as solvated biomolecules. Therefore, the spawned wavepack-
ets are effectively incoherent [12,13], and the classical trajectory approxima-
tion is justified in most situations.

24. Diabatic surface hopping

The interest in understanding photochemical processes has prompted the
development of methods for the treatment of nonadiabatic effects in classi-
cal MD. Most, if not all of these methods are based on surface hopping:
nuclei move on a single potential energy surface and nonadiabatic transi-
tions are included by allowing the trajectory to hop from one surface to
another. The size and complexity of biomolecular systems necessitate the
use of computationally cheap surface-hopping algorithms. In this section we
present the hopping procedure that we use in our simulations of photo-
chemical processes in biological systems.

Our so-called diabatic hopping algorithm is based on the one-
dimensional Landau and Zener equation, which relates the probability of
a transition between two electronic states ¥» and v, to the nonadiabatic
coupling, via:

1
Py = exp { - Z‘Irf] . (38)
In this equation ¢ is the Massey parameter defined as [14]
AE
=30 v (39)
n%% - g(Q)

where AE is the energy gap between the adiabatic states, Q represents a one-
dimensional nuclear reaction coordinate, and

8(Q) = (¢1|Va¥y). (40)

If we differentiate v, with respect to ¢ via 2 (Q), we can rewrite ¢ as

___AE (41)

n(wl% )
To decide when to undergo a transition to a dlfferent potential energy
surface, one would in principle need to compute (|2 £1,) at every time
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step of the simulation. In practice, however, it is possible to approximate
(1] & o) as follows.

If we integrate the classical equations of motion for the nuclei with a
small time step At, we have at .

Yi(t) = ©a,
o) = o (42)

where the p, p are the diabatic electronic states. At f+ At, the states will
have become mixed due to the nonadiabatic coupling. In the limit of an
infinitesimally small time step, the change in the wavefunctions can be
approximated by

Py (t+ At
Py (t+ At)

YA + /69081 43
—Boa + B, (43)

"

where § is a mixing coefficient. Numerical differentiation (finite differences)
of the wavefunction gives

0 Pa
—h, = — (IA 44
ALY e
and yields the following expression:
0 g
= ~ - 45
<wl 5 z/»2> o (#)

Since
(h(D(t + AL) = - B, (46)

we can compute (;(t)[1,(t+ At)) as a numerical approximation for
(1) %¢,) in the Massey parameter [Eq. (41)).

Calculating the energy gap AE and (i, (#)|y, (¢ + Af)) at every time step is
straightforward, and we can use the Landau—Zener formula [Eq. (38)] to
calcu}ate the probability of a transition to the other surface. In principle, the
transition probability can be used to spawn a new trajectory on the other
surface. However, since this procedure would lead to multiple trajectories
that have to be computed simultaneously, spawning is too demanding in
practice. We therefore restrict hopping to situations where the transition
probability approaches unity. This happens at the conical intersection sean,
wh?rg _AE ~0and ||(¢;()[1,(¢ + At))||=1. The former is trivially true by the
deﬁnlh(?n of an intersection. The latter follows from Eq. (37) and is illu-
strated in the branching space projection of Figure 6.4: passing through the
intersection during a single time step (A#), leads to geometries at tand ¢+ At
that are opposite to each other with respect to the apex. Thus, crossing the
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seam is equivalent to rotating the wavefunction by a half of a circle in the
branching space (Figure 6.4):

(D1 ()b (t + ALY = (1h1()1ha(¢ + 7))

fl

— (1(D) 1 (9))

= — (1 (Bl (1))

= -1 (47)

Because we allow hopping only at the conical intersection seam, our classi-
cal trajectories never leave the diabatic surface. Therefore, energy and
momentum are obviously conserved. In principle, this strict diabatic hop-
ping criterion could lead to an underestimation of the population transfer
probability, because a surface hop in regions with strong nonadiabatic
coupling far from the intersection is prohibited. In practice, however, the
high dimensionality of the seam ensures that all trajectories encounter such
regions of high transfer probability. The Landau-Zener model is clearly an
approximation but helps one to keep a proper physical insight, which is
crucial in understanding complex systems.

25. Excited state quantum chemistry

Although highly accurate methods for computing excited state electronic
wavefunctions have become available over the past years, they are usually
too time-consuming for systems larger than a few atoms. Therefore, most of
these methods are not yet applicable in on-the-fly MD simulations of large
biomolecular systems. Alternatively, simple forcefields or existing semi
empirical methods that are computationally efficient may be used, but their
applicability is limited, unless properly reparameterized [15,16]. Therefore,
for on-the-fly MD, a compromise between cost and accuracy has to be made.

A computationally feasible approach to describe excited state electronic
Structure is the equation of motion coupled cluster (EOM-CCSD) method
and ab initio dynamics simulations of small isolated molecules have been
performed at the EOM-CCSD level [17]. However, EOM-CCSD can only
work well if the underlying CCSD method provides a good description of
the ground electronic state. This can cause problems when bonds are being
broken or formed and the ground electronic state has a significant multi-
configurational character. The description of electronic states with a strong
double excitation character also causes problems [18].

Time-dependent density functional theory (TD-DFT) also offers a
computationally very efficient approach to describe excited states anc'i con-
Sequently has been used in excited state MD simulations [19]. Similar to
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EOM-CCSD, TD-DFT suffers from the deficiencies of the underlying mono-
configurational DFT description of the ground state in regions of bond
breaking and bond formation. Moreover, TD-DFT is known to encounter
severe problems in describing valence states of molecules exhibiting
extended w systems, doubly excited states, and charge transfer excited
states [20].

The problems associated with methods that are based on a single refer-
ence configuration, such as EOM-CCSD and TD-DFT, demonstrate that for
computing excited states, multiconfigurational methods are required to
provide wavefunctions that are sufficiently flexible to describe bond rear-
rangements, electronic state mixing, and electronic reorganizations. In addi-
tion, to calculate MD trajectories, analytical energy gradients are necessary.
Since the complete active space self-consistent field (CASSCF) method ful-
fills these requirements, it has often been used in the framework of excited
state dynamics simulations [21-25]. In CASSCF, a judicious set of occupied
and virtual orbitals is chosen, the so-called active space orbitals. In this
active space, a full configuration interaction calculation is performed,
while the other orbitals are being kept doubly occupied or empty in all
configurations. The active orbitals are optimized such that the electronic
energy of the state considered is minimal. Alternatively, the average energy
of the states under study is minimized (state-averaged approach), if state
bias or root-flipping problems [26] have to be avoided that occur near
surface crossing regions [27].

The CASSCF method captures to a large extent so-called static electron
correlation. However, due to the necessary truncation of the active space, it
does not recover dynamic electron correlation completely. Dynamic correla-
tion is known to play a key role in the quantitative description of barrier
heights and excitation energies. Thus, a higher level treatment that includes
dynamic electron correlation effects is desirable. Unfortunately, methods
that resolve both static and dynamic correlations tend to be computationally
too demanding and furthermore often lack the required analytical energy
gradients. Because in most cases CASSCF describes the topology of the
p(?tential energy surfaces of the involved states sufficiently accurate, it is
widely used for mechanistic studies of photochemical reactions [28].

Dynamic correlation is accounted for in multireference perturbation
Fheory approaches, such as CASPT2 [29]. CASPT2 provides a means of
including dynamic correlation, while simultaneously describing static cor-
relaﬁon. Recently, analytical CASPT2 energy gradients [30] have become
available, which has opened the way for MD simulations. Coe et al. have
alread){ used these gradients to perform an ab initio MD simulation on
the excited state proton transfer reaction in methyl salicylate [31]. However,
the computational cost of this method still prevents its use for larger

?lomdec“lar systems, in which the number of correlated electrons is t00
arge.
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Alternatively, dynamic electron correlation is included to some extent in
the restricted active space self-consistent field (RASSCF) method [29].
RASSCF allows larger active spaces and thus provides more flexibility in
the choice of the active orbitals than CASSCF [32]. The larger active space is
subdivided into three classes: orbitals with a limited number of valences, a
fully active orbital set, and orbitals with a limited number of electrons. By
eliminating the redundant configurations, the size of the configuration
interaction problem can be greatly reduced in RASSCF compared to
CASSCF without compromising accuracy. Because analytical gradients are
available, the RASSCF method can be expected to be used in excited state
dynamics simulations in the future. Unfortunately, however, it remains a
difficult task even in RASSCF to select the correct orbital set for a given
photochemical problem.

A promising alternative that circumvents the choice of active orbitals lies
in the use of semi empirical configuration interaction methods. These meth-
ods offer a lower cost alternative, while still taking into account the correla-
tion effects necessary to describe excited states. For example, the recently
developed semi empirical OM2 method has been shown to describe accu-
rately the well-known conical intersections of small molecules [33]. Thus,
the use of new semiempirical methods, such as OM2, could hold great
promise for nonadiabatic MD simulations of very large molecular systems
in the near future.

Due to inaccuracy of approaches that are based on a single reference
configuration, lack of validation of the semi empirical alternatives, and
prohibitive computational demands of multireference perturbation meth-
ods, CASSCF is at present the most attractive option for excited state MD
simulations. However, even at the CASSCF level of theory, the calculation of
energies and gradients at every step of the simulation places a severe
demand on computational resources. We are therefore forced to use mini-
mal active spaces. These minimal spaces have to be calibrated against higher
level methods before the simulations can be performed. Validation is
usually done by comparing the energies of stationary points on the CASSCF
potential energy surfaces to the single-point CASPT2 energies at these
geometries.

26. Mixed quantum classical molecular dynamics

MD computer simulations of biological systems have come of age. Since the
first application of MD on a small protein in vacuum more than three
decades ago [34], advances in computer power, algorithmic developments,
and improvements in the accuracy of the used interaction functions ha\{e
established MD as an important and predictive technique to study dynamic
Processes at atomic resolution [35]. In the interaction functions, the so-called
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MM forcefield, simple chemical concepts are used to describe the potential
energy of the system [36]:

Nbonds Nangles Niorsions

Vim = Z Vlbond + Z V;mgle + Z Vltorsion
i i li

Nmm Nmm sal Ny Nmm .
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where Ny is the number of atoms in the system. Bonds and angles ( ybond
V") are normally modeled by harmonic functions, and torsions by peri-
odic functions (V7). The pairwise electrostatic interaction between
atoms with a partial charge (Q,) is given by Coulomb’s law:

yCoul _ QiQ; (49)
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in which R;; denotes the interatomic distance, e the unit charge, and ¢g the
electric constant. Short-range Pauli repulsion and long-range dispersion
attraction are most often described by a single Lennard-Jones potential:

ij 12 ij 6
v (G2) _ (&% (50)

with CJ, and C/ a repulsion and attraction parameter, respectively, that
depend on the atom types involved.

Electrons are thus ignored in molecular mechanics forcefields. Their
influence is expressed by empirical parameters that are valid for the ground
state of a given covalent structure. Therefore, processes that involve electro-
nic rearrangements, such as photochemical reactions, cannot be described at
the MM level. Instead, these processes require a quantum mechanics
description. As we have discussed above, the computational effort asso-
ciated with computing excited state electronic structure puts severe con-
straints on the size of the system that can be studied. To overcome this
limitation for biological systems, which are typically orders of magnitude
too large for a complete quantum chemical treatment, methods have been
developed that treat a small part of the system at an appropriate QM level,
while retaining the computationally cheaper forcefield (MM) for the remain-
der. This hybrid QM/MM strategy was originally introduced by Warshel
and Levitt [37] and is illustrated in Figure 6.5.

The justification for dividing a system into regions that are described at
different levels of theory is the local character of chemical reactions in
condensed phases. A distinction can usually be made between a “reaction



Computer Simulations of Photobiological Processes 201

Figure 6.5 The QM/MM partitioning scheme used in recent simulations of a photoactive
yellow protein chromophore analog in water. The atoms of the QM subsystem are shown
in ball-and-stick representation and MM atoms are shown as thick sticks. The CASSCF
method was employed to model the electronic structure of the chromophore, while the
SPCE model [38] was used for the water molecules.

center” with atoms that are directly involved in the reaction and a
“spectator” region, in which the atoms do not directly participate in the
reaction. For example, most reactions in solution involve the reactants and
the first few solvation shells. The bulk solvent is hardly affected by the
reaction, but can influence the reaction via long-range interactions. The same
is true for most enzymes, in which the catalytic process is restricted to an
active site. The rest of the protein provides an electrostatic background that
may or may not facilitate the reaction.

The hybrid QM/MM Hamiltonian contains three classes of interactions:
interactions between atoms in the QM region, between atoms in the MM
region, and interactions between QM and MM atoms

thbrid = HQM + Hum + HQM/MM~ (51)

The interactions within the QM and MM regions are relatively straightfor-
ward to describe, that is, at the QM and MM level, respectively. The inter-
actions between the two subsystems are more difficult to describe and
several approaches have been proposed.

In the most simple approach, the QM subsystem is mechanically
embedded in the MM system and kept in place by forcefield interactions,
that is, bonds, angles, torsions, and Lennard-Jones. With the exception of
these interactions, the two systems are treated independently. Thus a quan-
tum chemistry calculation is performed on an isolated QM subsystem, while
a forcefield calculation is performed on the MM region. An improvement of
the model is to use the isolated electronic wavefunction to derive partial
atomic charges for the QM atoms and use these charges to compute the
electrostatic QM/MM interactions with the MM atoms.
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In the more popular electronic embedding scheme of Field and
coworkers [39], the MM atoms enter the electronic Hamiltonian, as if they
were QM nuclei:

ne Nmm 0
i

(52)

where H® is the original electronic Hamiltonian for the isolated QM system,
defined in Eq. (5); 7, is the number of electrons, Nom the number of oM
nuclei and Ny the number of MM atoms; Z4 and Qx are the nuclear and
partial charges of QM nucleus A and MM atom K, respectively; and .
denotes the electron mass. Because the MM atoms enter the Hamiltonian,
the electronic wavefunction is polarized by the environment. Simulta-
neously, the electrons are exerting electrostatic forces on both QM nuclei
and MM atoms. Problems may arise if the MM atoms near the QM region
have high partial charges. In this case, the electrons are strongly attracted by
such MM atoms, and the wavefunction can become overpolarized. Penetra-
tion of electron density into the MM region is an artefact of ignoring the
electrons of the MM atoms. A remedy for this spill-out effect is to use
Gaussian-shaped charge densities rather than point charges to represent
partially charged MM atoms [40].

Interactions between the nuclei in the QM region, and between QM
nuclei and MM atoms are described by Coulomb’s law:

NQM NQM Z Z NQM Nmm Z Q
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In addition to electrostatics, there are also van der Waals interactions
beMeen the subsystems that are handled at the forcefield level [Eq. (50)),
as if the QM nuclei were MM atoms. Similar to the previous model, bonded
interactions, such as bonds, angles, and torsions involving both QM and

MM atoms, are described by the respective forcefield functions.

If the QM and MM subsystems are connected by chemical bonds, care
has to be taken when evaluating the QM wavefunction. Cutting the
QM/MM bond creates one or more unpaired electrons in the QM subsys-
tem. In reality, these electrons are paired in a bonding orbital with electrons
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belonging to the atoms on the MM side. A number of approaches to remedy
the artifact of such open valences have been proposed. The most easy
solution is to introduce a monovalent link atom at an appropriate position
along the bond vector between the QM and MM atoms. Hydrogen is most
often used, but there is no restriction on the type of the link atom and even
complete fragments, such as methyl groups, can be used to cap the QM
subsystem. The link atoms are present only in the QM calculation and are
invisible for the MM atoms. Alternative approaches for capping the QM
region are the frozen orbital approach [41] and the generalized hybrid
orbital method [42]. In all of our simulation studies to date, we have used
hydrogen link atoms for capping the QM subsystem.

The QM /MM scheme of Field and coworkers provides a conceptually
intuitive way of including the effect of an environment on a chemical
reaction. However, unless polarization is treated explicitly at the forcefield
level, this QM/MM model is not internally consistent. In most forcefields
polarization is not explicitly included, but is implicitly accounted for via the
parameters in the other terms, most notably, in the nonbonded interactions.
Thus, although the MM region can induce polarization of the QM subsys-
tem, the latter cannot back-polarize the MM region. A related problem arises
from the use of standard Lennard-Jones and charge parameters, which
implicitly contain polarization. When using these parameters without mod-
ification, there is both explicit and implicit polarization of the QM region.
Therefore, the total polarization can be overestimated. To avoid such possi-
ble artifact, the nonbonded parameters in principle should be reparameter-
ized for use in QM/MM simulations. However, this procedure requires the
optimization of very many parameters that also depend on the level of
theory employed for the QM subsystem and is most often skipped in
practice.

3. APPLICATIONS

In this section we discuss some of our recent applications of excited state
dynamics simulations on photobiological systems. We will show that in
these systems, the protein environment controls the photochemical proper-
ties of the chromophore and steers the excited state dynamics.

3.1. Photoactive yellow protein

Photoactive yellow protein (PYP) is believed to be the primary photorecep-
tor for the photoavoidance response of the salt-tolerant bacter%um Hleorh.o-
dospira halophila [43]. PYP contains a deprotonated 4-hydroxy-cinnamic acid
(or p-coumaric acid, pca) chromophore linked covalently to the y-sulfur of
Cys69 via a thioester bond (Figure 6.6). Upon absorbing a blue-light photon,
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Figure 6.6 Snapshots from excited state trajectories of wild-type PYP showing the
chromophore (pca) in the active site pocket. The first snapshot is at the excitation. The
second shows the configuration at the radiationless transition from S; to So. The third
snapshot shows the photoproduct, in which the carbonyl oxygen of the thioester linkage
has flipped and is no longer hydrogen bonded to the backbone of Cys69.

PYP enters a fully reversible photocycle involving several intermediates on
timescales ranging from a few hundred femtoseconds to seconds [43].

To understand the intrinsic photochemical properties of the PYP chro-
mophore, we have performed geometry optimizations of an isolated chro-
mophore analog [44]. In these optimizations, the complete m system of the
chromophore was included in the active space, which thus consisted of 12
electrons in 11 & orbitals. In addition to optimizing the local minima on the
S; potential energy surface and the barriers that separate them, we also
located conical intersections in the vicinity of these mimima. The optimiza-
tions revealed that there are two minima on S;: the single bond twisted
minimum, in which the bond adjacent to the phenol ring is rotated by 90°%
and the double bond twisted minimum, in which the ethylenic bond is
twisted at 90° (Figure 6.7). In the isolated chromophore, there is almost no
barrier for reaching the single bond twisted S; minimum from the Franck-
Condon region, whereas there is a significant barrier to double bond

(a) Single bond twisted S; minimum (b) Double bond twisted S; minimum
’ H

\fiog ) (g /
AEg, s, =171.1 kJ/mol AEs g, =91.2 kJ/mol

Figur.e 6.7 Excitec! state minimum energy configurations of a chromophore analog. In both
the single bond twisted S, minimum () and the double bond twisted S, minimum (b), there

isa su.bstantial energy gap between the ground and excited states. The distribution of the
negative charge in these minima is opposite.
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rotation. Thus, after photon absorption in vacuum, the main relaxation
channel on S, involves rotation of the single bond to 90°. We furthermore
found that the S,/S, intersection seam lies very far away from this mini-
mum. As a consequence, radiationless decay is not very likely to occur in
vacuum. In subsequent QM /MM simulations, we have probed the effect of
different environments on the photochemistry of the chromophore.

To examine the effect of an aqueous environment, we have performed 91
QM/MM excited state dynamics simulations of a chromophore analog in
water [44]. The chromophore was described at the CASSCF(6,6)/3-21G level
of theory, while the water molecules were modeled by the SPCE forcefield
[38]. The results of these simulations demonstrate that in water radiationless
decay is very efficient [44]. The predominant excited state decay channel
involves twisting of the single bond (88%) rather than the double bond
(12%). In contrast to vacuum, decay takes place very near these minima.
Inspection of the trajectories revealed that decay is mediated by specific
hydrogen bond interactions with water molecules. These hydrogen bonds
are different for the single and double twisted S; minima, which reflects the
difference in charge distribution between these minima [45]. In the single
bond twisted S; minimum, the negative charge resides on the alkene moiety
of the chromophore (Figure 6.7). Three strong hydrogen bonds to the car-
bonyl oxygen stabilize this charge distribution to such an extent that the
seam almost coincides with the single bond twisted S; minimum (Figure 6.8).
In the double bond twisted S; minimum, the negative charge is localized
on the phenolate ring (Figure 6.7). Transient stabilization of this charge
distribution by two or more strong hydrogen bonds to the phenolate oxygen
brings the seam very close to this S; minimum (Figure 6.8). Thus, in water the
ultrafast excited state decay is mediated by hydrogen bonds.

Slngle bond twisted S, mmlmum

L b __-. ) — Decay to S
S - 88% -
f“(‘-'l. :

F*TTS 2 A 12%
o 4
jl L "’ \ k.. -—-».Q" — Decayto S,

PYP chromophore in water
Double bond twisted S; minimum

Figure 6.8 In water the chromophore undergoes both single and double bond
isomerization. Excited state decay from these minima is very efficient due to stabilization
of the chromophore’s S, charge distribution by specific hydrogen bond interactions.
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To find out how the protein mediates the photochemical process, we also
carried out a series of QM /MM simulations of wild-type PYP. Figure 6.6
shows the primary events after photoexcitation in the simulation. The
chromophore rapidly decays to the ground state viz a 90° rotation of the
double bond (Figure 6.6), rather than the single bond. During this photo-
isomerization process, the hydrogen bonds between the chromophore’s
phenolate oxygen atom and the side chains of the highly conserved Tyr42
and Glu46 residues remain intact. Just as in water, these hydrogen bonds
enhance excited state decay from the double bond twisted minimum.

Upon returning to the ground state, the chromophore either relaxes back
to the original trans conformation (180°), or it continues isomerizing to a cis
conformation (0°). In the latter case, the relaxation also involves a flip of the
thioester linkage, which causes the carbony! group to rotate 180°. During
this rotation, the hydrogen bond between the carbonyl oxygen and the
Cys69 backbone amino group is broken (Figure 6.6). In total, 14 MD simula-
tions were carried out, initiated from different snapshots from a classical
ground state trajectory. The fluorescence lifetime (200 fs) and isomerization
quantum yield (30%) in the simulations agree well with experiments (400 fs
[46] and 35% [43], respectively).

In the wild-type protein no single bond isomerization was observed.
Thus, the protein not only provides the hydrogen bonds required for ultra-
fast decay, but also controls which of the chromophore’s bond isomerizes
upon photoexcitation. We identified the positive guanidinium moiety of
Arg52 located just above the chromophore ring, as the “catalytic” residue
that enforces double bond isomerization. The preferential electrostatic sta-
bilization of the double bond twisted S; minimum by the positive Arg52
strongly favors double bond isomerization over single bond isomerization.

To elucidate the role of this arginine in the activation process in more
detail, we performed excited state dynamics simulations on the Arg52GIn
mutant of PYP [47]. This mutant can still enter the photocycle, albeit with a
lower rate and quantum yield [48,49]. Without the positive Arg52, the
predominant excited state reaction in the mutant involves isomerization of
a single bond in the chromophore, rather than the double bond (Figure 6.9)
[50]. This observation confirms that the role of Arg52 is to steer the initial
events after photoabsorption to ensure rotation of the double bond rather
than the single bond in the chromophore.

During rotation of the single bond, the hydrogen bond between the carbonyl
oxygen and Cys69 backbone amino group is broken. As shown in Figure 6.10,
new hydrogen bonds are rapidly formed between the carbonyl oxygen atom
and the backbone amino groups of Tyr98 and Asp97. A water molecule from
outside enters the chromophore pocket to donate a third hydrogen bond. With
these three hydrogen bonds stabilizing the negative charge on the alkene
moiety, the chromophore rapidly decays to S,. Thus, the decay mechanism in
the Arg52GIn mutant and in water are essentially the same.
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Figure 6.9 Snapshots from an excited state trajectory of the Arg52Gln mutant of PYP,
showing the chromophore (pca) in the active site pocket. The first snapshot is at the
excitation. The second shows the configuration at the radiationless transition from S, to So.
The third snapshot shows the photoproduct. In the mutant isomerization takes place
around the single bond. Like in the wild-type protein, the carbonyl oxygen of the thioester
linkage flips, causing the break of the hydrogen bond to the backbone of Cys69.

Although single bond isomerization does not result in the formation of
the cis chromophore, a 180° flip of the thioester group and a rupture of the
hydrogen bond to Cys69 was observed with a 20% quantum yield (Figure
6.9). Together with the experimental observation that the mutant has a
photoactivation quantum yield of about 21% [49], this suggests that the
key step to enter the photocycle is the oxygen flip rather than the double
bond isomerization.

To summarize, the simulations are consistent with experimental obser-
vations and have provided detailed structural and dynamic information at a
resolution well beyond that achievable by other means. From the simula-
tions, key amino acids have been identified as well as the mechanism by
which they control the primary events in the photocycle of PYP. These are (1)
double bond photoisomerization and (2) the break of a hydrogen bond

Figure 610 Snapshots from an excited state trajectory of the Arg52GIn mutant of PYP,
demonstrating that three hydrogen bonds to the carbonyl moiety are essential for S, decay
at the single bond twisted minimum. The first snapshot is at the excitation to S;. The
second snapshot shows the twisted configuration without hydrogen bonds to the carbonyl.
The gap between S; and S, is far too high for decay at this configuration. However, as the
third snapshot shows two backbone amino groups and a bulk water, that has moved into
the chromophore pocket during the excited state dynamics, donate the three hydrogen
bonds that are required for efficient decay from the S; minimum.
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between the chromophore and the protein backbone. These events trigger a
proton transfer from the protein to the chromophore, which ultimately leads
to the signaling state of PYP [51].

3.2. Reversibly switchable fluorescent proteins

Photochromic, or reversibly switchable fluorescent proteins (RSFPs) that
can be photoswitched between a fluorescent and a nonfluorescent state
have proven to be crucial for new innovative microscopy schemes. How-
ever, despite the availability of X-ray structures of fluorescent and nonfluor-
escent states of several RSFPs, there is as yet no consensus about how these
protein achieve the switching. To reveal the molecular basis of the switching
process we have carried out a two-step QM /MM study of asFP595, a natural
occurring RSFP from the sea anemone Anemonia sulcata (Figure 6.11).

The first step was to locate the protons in the chromophore binding
pocket, because these protons were not resolved in the available X-ray
structures. For this purpose, simulated UV/Vis spectra were compared to
the available experimental data. This comparison was backed up by con-
tinuum electrostatics calculations, and enabled to unambiguously deter-
mine the protonation of the on and off states of asFP595 [52]. These
calculations ascertained that the neutral chromophore form is dominant in
the cis conformation (on-state), whereas the zwitterionic and the anionic
chromophores predominate in the trans conformation (off-state) (Figure
6.11b). These results reveal that the photoinduced trans—cis isomerization
of the chromophore is accompanied by proton transfer events. As shown in
Figure 6.11a, these proton transfers are mediated by the ionizable residues
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Figure 6.11 (a) Active site of the reversibly switchable fluorescent protein asFP595,
showing the asFP595 chromophore (MYG) in the trans conformation and adjacent amino
acid side chains. Dashed lines represent hydrogen bonds between MYG and Ser158, Glu215,
and a crystallographic water molecule {W233), respectively. His197 is 7 stacked to the MYG
phenoxy moiety and forms a hydrogen bond to Glu215. The carbon skeleton of the QM
subsystem is shown in cyan, and the carbon atoms modeled by MM are shown in orange. (b)
Schematic drawings of the important MYG protonation states.
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Ser158, His197, and Glu215 in the chromophore pocket. His197 is conne-
cted through an extended hydrogen bonding network to the exterior
interface between the protein and the surrounding solution (not shown in
Figure 6.11).

In the second step of the study, nonadiabatic QM/MM MD simulations
were carried out to elucidate the photochemistry of each of the previously
identified protonation states of the chromophore [53]. In these simulations,
energies and gradients on the ground and excited states were calculated on
the fly at the CASSCF(6,6)/3-21G level of theory. Prior to the dynamics
simulations, minima and conical intersections were characterized in vacuo
at the RASSCF(18,7+4+5)[2,2]1/6-31G" level of theory, that is, including all &
orbitals of the chromophore in the active space. The final six-electron, six-
orbital active space used in the QM/MM dynamics simulations was
selected from these RASSCEF calculations such as to enable the simultaneous
description of the ground state and the first excited state.

The quantum yields and excited state lifetimes from the QM/MM
dynamics simulations agree well with experimental measurements [54]. In
addition, the simulations enable to predict the structures of the hitherto
unknown photochemical intermediates and the irreversibly fluorescent
state. Furthermore, the simulations revealed how the proton distribution
in the active site of the asFP595 controls the photochemical conversion
pathways of the chromophore in the protein matrix. The suggested mechan-
ism in Figure 6.12 shows that changes in the protonation state of the
chromophore and some proximal amino acids lead to different photoche-
mical states, which all turn out to be essential for the photoswitching
mechanism. These photochemical states are (1) a neutral chromophore,
which can photoisomerize back and forth between the trans and cis config-
uration on a subpicosecond timescale, (2) an anionic chromophore, which
rapidly undergoes radiationless decay after excitation in both the cis and
trans configuration, and (3) a long-lived and therefore putatively fluorescent
zwitterionic chromophore. The trans zwitterion can rapidly return to the
ground state through proton transfer to the neighboring Glu215 (Figure
6.11a). This alternative de-excitation pathway is not accessible for the cis
isomer, thus explaining why only the cis form fluoresces. The overall stabi-
lity (and thus the relative population) of the different protonation states is
controlled by the isomeric state of the chromophore.

On the basis of the simulations, it was proposed that radiation-induced
decarboxylation of the glutamic acid Glu215 could block the proton transfer
pathways that enable the deactivation of the zwitterions and thus leads to
irreversible fluorescence (Figure 6.12). Recent experiments on the structu-
rally similar protein Dronpa [55,56] also provide strong gupport for the
proposed protonation/deprotonation mechanism. The 31m11ar1ty‘ between
the chromophores in a variety of fluoroproteins suggests that during mol§-
cular evolution, the (p-hydroxybenzylidene)imidazolinone chromophoric
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Figure 6.12 Scheme of the reversible photoswitching mechanism of asFP595. The
fluorescent state Z;, is highlighted. The green arrows indicate ground state equilibria,
whereas the red arrows indicate excited state processes. The major protonation states are
the zwitterionic and the anionic chromophores in the trans conformation, and the neutral
chromophore in the cis conformation, as indicated in the square brackets.

moiety served as a template and that the photochromic properties—and
thus the function—was fine-tuned by the protein environment.

4. FINAL REMARKS AND CONCLUSIONS

Understanding light-driven processes is one of the major goals of the bio-
and nanosciences. The underlying molecular mechanisms are typically
governed by subpicosecond atomic motions. Mechanisms on such ultrafast
timescales are very challenging to probe by experiment. Here, MD simula-
tions have become an invaluable tool to understand such processes in
atomic detail.

In this contribution, we have reviewed our approach for excited state
MD simulations. In the applications that we have selected here, the simula-
tions have provided detailed structural and dynamical information of the
photobiological process at a resolution well beyond what is achievable
experimentally. The applications also demonstrate what is feasible today
with on-the-fly MD simulations, and where the limits are. These limits are
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predominantly imposed by the current state of computer technology, which
restricts both system size and timescale of the processes we can study today.
However, the expected increase of computer power, complemented by the
development of more efficient electronic structure methods and new algo-
rithms, will enable the study of larger systems and longer timescales in the
near future. Therefore, excited state MD simulation has the potential to lead
to a better understanding of photobiological reactions. Ultimately, we
expect these simulations to enable accurate predictions of photochemical
properties and to become a standard tool for rational design of new photo-
active systems.

REFERENCES

[1] A. Szabo, N.S. Ostlund, Modern Quantum Chemistry, Dover Publications, New York,
1989.
[2] H. Képpel, W. Domcke, L.S. Cederbaum, Adv. Chem. Phys. 57 (1984) 59.
{3} G.A. Worth, L.S. Cederbaum, Annu. Rev. Phys. Chem. 55 (2004) 127.
{4] J. von Neumann, E. Wigner, Z. Physik 30 (1929) 467.
I5] GJ. Atchity, S.S. Xantheas, K. Ruedenberg, J. Chem. Phys. 95 (1991) 1862.
[6] G.J. Atchity, K. Ruedenberg, J. Chem. Phys. 111 (1999) 2910.
[7] DR. Yarkony, J. Chem. Phys. 112 (2000) 2111.
[8] H. Koppel, J. Gronki, S. Mahapatra, J. Chem. Phys. 115 (2001) 2377.
[91 H. Muller, H. Koppel, L.S. Cederbaum, New J. Chem. 17 (1993) 7.
[10] S. Matsika, D.R. Yarkony, J. Phys. Chem. A 106 (2002) 2580.
[11] 1. Burghardt, J. Chem. Phys. 114 (2001) 89.
[12] M. Thachuk, M.Y. Ivanov, D.M. Wardlaw, ]. Chem. Phys. 109 (1998) 5747.
(13] J. Onuchic, P. Wolynes, J. Phys. Chem. 92 (1998) 6495.
[14] M. Desouter-Lecomte, J. Lorquet, J. Chem. Phys. 71 (1979) 4391.
[15] A. Warshel, Nature 260 (1976) 679.
[16) A. Toniolo, S. Olsen, L. Manohar, T.J. Martinez, Faraday Discuss. 127 (2004) 149.
[17] KX. Baeck, T.J. Martinez, Chem. Phys. Lett. 375 (2003) 299.
[18] RJ. Bartlett, M. Musial, Rev. Mod. Phys. 79 (2007) 291.
[19] I Tavernelli, U.F. Rohrig, U. Rothlisberger, Mol. Phys. 103 (2005) 963.
[20} A. Dreuw, M. Head-Gordon, Chem. Rev. 105 (2005) 4009.
[21} J.D. Coe, T.J. Martinez, J. Phys. Chem. A. 110 (2006) 618.
[22] 1.D. Coe, T J. Martinez, J. Am. Chem. Soc. 127 (2005) 4560.
[23] O. Weingart, A. Migani, M. Olivucci, M.A. Robb, V. Buss, P. Hunt, J. Phys. Chem. A 108
(2004) 4685.
[24] M. Boggio-Pasqua, M.J. Bearpark, P.A. Hunt, M.A. Robb, J. Am. Chem. Soc. 124 (2002)
1456.
[25] A. Sanchez-Galvez, P. Hunt, M.A. Robb, M. Olivucci, T. Vreven, H.B. Schlegel, . Am.
Chem. Soc. 122 (2000) 2911.
[26] H.J. Werner, W. Meyer, ]. Chem. Phys. 74 (1981) 5794.
127] G.A. Worth, M.A. Robb, Adv. Chem. Phys. 124 (2002) 355. _ .
(28] M.K.B. Lipkowitz, D.B. Boyd (Eds.), Reviews in Computational Chemistry, Wiley,
New York, 2000.
[29) B.O. Roos, Acc. Chem. Res. 32 (1999) 137.
130] P. Celani, H.J. Werner, J. Chem. Phys. 119 (2003) 5044.



212 G. Groenhof et al.

[31] J.D. Coe, B.G. Levine, T.J. Martinez, J. Phys. Chem. A 111 (2007) 11302.

[32] M. Boggio-Pasqua, M.J. Bearpark, M. Klene, M.A. Robb, J. Chem. Phys. 120 (2004) 7849.

[33] T.W. Keal, A. Koslowski, W. Thiel, Theor. Chem. Acc. 118 (2007) 837.

[34] J.A. McCammon, B.R. Gelin, M. Karplus, P.G. Wolynes, Nature 262 (1976) 325.

[35] H.J.C. Berendsen, Science 271 (2001) 954.

[36] F. Jensen, Introduction to Computational Chemistry, Wiley, New York, 2001.

[37] A. Warshel, M. Levitt, J. Mol. Biol. 103 (1976) 227.

[38] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91 (1987) 6269.

[39] M.]. Field, P.A. Bash, M. Karplus, J. Comp. Chem. 11 (1990) 700.

[40] P. Amara, M.J. Field, Theor. Chem. Acc. 109 (2003) 43.

[41] D.M. Philipp, R.A. Friesner, ]. Comput. Chem. 20 (1999) 1468.

[42] ]. Gao, P. Amara, C. Alhambra, M.]. Field, J. Phys. Chem. A 102 (1998) 4714.

[43] KJ. Hellingwerf, ]. Hendriks, T. Gensch, J. Phys. Chem. A 107 (2003) 1082.

[44] M. Boggio-Pasqua, M.A. Robb, G. Groenhof, ]. Am. Chem. Soc. 131 (2009) 13580.

[45] E.V. Gromov, 1. Burghardt, J.T. Hynes, H. Képpel, L.S. Cederbaum, J. Photochem. Photo-
biol. A 190 (2007) 241.

[46] N. Mataga, H. Chosrowjan, Y. Shibata, Y. Imamoto, F. Tokunaga, J. Phys. Chem. B 104
(2000) 5191.

[47] N. Shimizu, H. Kamikubo, Y. Yamazaki, Y. Imamoto, M. Kataoka, Biochemistry 45 (2006)
3542,

[48] P. Changenet-Barret, P. Plaza, M.M. Martin, H. Chosrowijan, S. Taniguchi, N. Mataga, et al,,
Chem. Phys. Lett. 434 (2007) 320.

[49] K. Takeshita, Y. Imamoto, M. Kataoka, K. Mihara, F. Tokunaga, M. Terazima, Biophys. . 83
(2002) 1567.

[50] G. Groenhof, L.V. Schifer, M. Boggio-Pasqua, H. Grubmiiller, M.A. Robb, J. Am. Chem.
Soc. 130 (2008) 3250.

[51] G. Groenhof, M.F. Lensink, H.J.C. Berendsen, A.E. Mark, Proteins 48 (2002) 212.

[52] L.V. Schafer, G. Groenhof, AR. Klingen, GM. Ullmann, M. Boggio-Pasqua, M.A. Robb,
H. Grubmiiller, Angew. Chem. Int. Ed. 46 (2007) 530.

[53] L.V. Schifer, G. Groenhof, M. Boggio-Pasqua, M.A. Robb, H. Grubmiiller, PLoS Comput.
Biol. 4 (2008) €1000034.

[54] T.A. Schiittrigkeit, T. von Feilitzsch, CK. Kompa, K.A. Lukyanov, A.P. Savitsky, A.A.
Voityuk, M.E. Michel-Beyerle, Chem. Phys. 323 (2006) 149.

[55] S. Habuchi, P. Dedecker, J.I. Hotta, C. Flors, R. Ando, H. Mizuno, A. Miyawaki, J. Hofkens,
Photachem. Photobiol. Sci. 5 (2006) 567.

[56] E. Fron, C. Flors, G. Schweitzer, S. Habuchi, R. Ando, H. Mizuno, J. Am. Chem. Soc. 129
(2007) 4870.



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 
	Seite 31 
	Seite 32 

