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Abstract1

Circular dichroism spectroscopy is a structural biology technique frequently2

applied to determine the secondary structure composition of soluble proteins.3

Our recently introduced computational analysis package SESCA aids the in-4

terpretation of protein circular dichroism spectra and enables the validation of5

proposed corresponding structural models. To further these aims, we present6

the implementation and characterization of a new Bayesian secondary structure7

estimation method in SESCA, termed SESCA bayes. SESCA bayes samples8

possible secondary structures using a Monte Carlo scheme, driven by the like-9

lihood of estimated scaling errors and non-secondary-structure contributions of10

the measured spectrum. SESCA bayes provides an estimated secondary struc-11

ture composition and separate uncertainties on the fraction of residues in each12

secondary structure class. It also assists efficient model validation by providing13

a posterior secondary structure probability distribution based on the measured14

spectrum. Our presented study indicates that SESCA bayes estimates the sec-15

ondary structure composition with a significantly smaller uncertainty than its16

predecessor, SESCA deconv, which is based on spectrum deconvolution. Fur-17

ther, the mean accuracy of the two methods in our analysis is comparable, but18

SESCA bayes provides more accurate estimates for circular dichroism spectra19

that contain considerable non-SS contributions.20

1 Introduction21

Circular dichroism (CD) spectroscopy in the far ultraviolet (UV) range (175-22

260 nm) is an established method to study the structure of proteins in solution23

[1, 2], because of the conformation-dependent characteristic CD signal of pep-24

tide bonds that comprise the backbone of all proteins and oligo-peptides. In25

particular, the CD spectrum is known to change with the secondary structure26
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(SS) of proteins, and markedly different spectra are observed for proteins rich in27

α-helices, β-sheets, and disordered regions [3, 4]. Because of these characteristic28

signals, it is common to interpret CD spectra by decomposing them into a set29

of basis spectra that each represent the average CD signal of pure (secondary)30

structure elements.31

The CD analysis package SESCA (Structure-based Empirical Spectrum Cal-32

culation Approach) [5] allows for using several empirical basis spectrum sets in33

two methods. The first method predicts a theoretical CD spectrum from a34

proposed SS composition, which is typically obtained from a model structure35

or structural ensemble. The second method fits a measured CD spectrum to36

estimate the protein SS composition. Both methods can be used to validate37

protein structural models. The accuracy and precision of validation methods38

is mainly limited by scaling errors due to the uncertainty of the measured pro-39

tein concentration and non-SS contributions that are not represented in the40

basis spectra. We have quantified the uncertainty caused by these deviations41

between measured CD spectra and their predicted SS signals previously [6].42

The same study also revealed a potential caveat in the current SS estimation43

method used in SESCA. In this deconvolution method, a linear combination of44

selected basis spectra is used to approximate a measured CD spectrum of the45

protein of interest. The coefficients of the approximation with the smallest46

deviation are used to estimate the fraction of SS elements in the protein under47

the measurement conditions. Unfortunately, the interference caused by non-SS48

contributions may increase the deviation from the measured spectrum for some49

SS compositions and decrease it for others, which may lead to significant errors50

in deconvolution-based SS estimates.51

To alleviate this problem, we developed and implemented a new SS esti-52

mation method for SESCA. The Python module, SESCA bayes determines the53
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likelihood of putative SS compositions using a Bayesian inference framework for54

a given measured CD spectrum and a basis spectrum set. This method uses55

the expected joint probability distribution of deviations caused by scaling errors56

and non-SS contributions, and thus fully accounts for the uncertainty caused by57

these two experimental factors. Here, we describe the theoretical background,58

general workflow, as well as input and output parameters of this implementa-59

tion. Further, we will assess the accuracy and precision of this method through60

a series of sample applications.61

2 Theory: Bayesian SS probabilities62

Our goal using this method is to determine the conditional probability P (SS|CD)63

of SS compositions given a previously measured CD spectrum. According to64

Bayes’ rule [7], this probability can be inferred according to65

P (SSj |CD) ∝ P (CD|SSj) · P (SSj), (1)

where P (CD|SSj) is the probability of observing the measured spectrum for a66

protein with a given SS composition j (i.e, the likelihood function) and P (SSj)67

is the prior probability of the given SS composition of the protein. As shown68

in Fig. 1 (top), the likelihood P (CD|SSj) is determined in five steps. First,69

the SS signal is predicted from the SS composition of interest (Cji) using an70

appropriate basis spectrum set (Bil), as discussed in our previous study [5].71

Second, if the basis set provides side chain corrections based on the protein72

sequence, they are added to the predicted spectrum. Third, the measured CD73

spectrum is rescaled to minimize the root-mean-square deviation (RMSD) from74

the predicted spectrum. The obtained scaling factor αj quantifies and eliminates75

deviations from scaling errors of the measured spectrum, whereas the RMSD76
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from the rescaled spectrum (RMSDj) quantifies the average deviation due to77

unaccounted non-SS contributions. Once RMSDj and αj (collectively CD de-78

viations) are computed, the likelihood of such deviations is determined from79

the joint probability distribution (PRMSD,α, see below), which also estimates80

the likelihood of observing the measured CD spectrum for the given SS compo-81

sition P (CD|SSj). Finally, to compute the posterior probability P (SSj |CD)82

of SS composition j, the CD spectrum likelihood is multiplied by the prior SS83

probability.84

3 Methods85

3.1 Joint probability distributions86

We computed discrete joint-probability distribution functions for SESCA bayes87

that can be used to determine CD spectrum likelihoods. These probability88

distributions were computed from CD deviations extracted from SS estimations89

of previously measured CD spectra. Reference CD spectra were taken from the90

SP175 reference set [8], which contains 71 synchrotron radiation CD (SR-CD)91

spectra of globular proteins with varying SS compositions. The CD spectrum92

of Jacalin (SP175/41) was discarded from the data set due to issues reported93

during the measurement and its unusually large estimated CD deviations.94

The joint probability distribution functions of CD deviations were con-95

structed as the sum of 70 two-dimensional Gaussian functions, each representing96

the estimated scaling factors and non-SS contributions of a reference spectrum97

from the SP175 set. The mean and the variance of these Gaussian functions98

was determined by averaging over multiple RMSDj and αj values obtained for99

each CD spectrum from SS estimations using four different basis spectrum sets.100

This approach yielded likelihood functions that were defined for a wide range101
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of possible CD deviations, and took the uncertainty due to discretization errors102

of the basis spectrum determination into account.103

In SESCA there are two types of basis sets, those that are solely based on on104

SS compositions, and those that also include side chain corrections. Because the105

average size of CD deviations differ for these two basis set types, we determined106

two probability distributions shown in Fig. 2. The joint probability distribution107

function for basis set without side-chain corrections (left) was calculated from108

CD deviations estimated using the basis sets DS-dT, DSSP-1, HBSS-3, and DS5-109

4. For basis sets including side-chain corrections, the joint probability of CD110

deviations (right) were computed using the basis sets DS-dTSC3, DSSP-1SC3,111

HBSS-3SC1, and DS5-4SC1. For clarity, the Figure shows both a linear (top112

row) as well as logarithmic (bottom row) representation of the CD deviation113

likelihood. For both likelihoods, the one-dimensional probability distribution114

of RMSDj was also calculated, which can be used to estimate the secondary115

structure from CD spectra without regards to the applied scaling factors, albeit116

these estimates naturally have a lower precision.117

3.2 Synthetic spectra118

To test the accuracy of the Bayesian SS estimation method, six synthetic CD119

spectra were created using a linear combination of the three basis spectra from120

the DS-dT basis set (as discussed in our previous study [5]). To this aim,121

the coefficients shown in Table 1 for the basis spectra α-helix, β-strand, and122

Other for each spectrum were used. For five of six synthetic spectra (k= 1123

to 5), random coefficients were generated from uniformly distributed random124

numbers between zero and one, subsequently normalized to sum up to one. For125

the sixth synthetic spectrum (k= 6), the coefficients 0.3, 0.4, and 0.3 as well as126

the non-SS contributions (see below) were adopted from our previous study [6]127
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for comparison.128

To model the effects of experimental deviations from the ideal SS signal, the129

CD spectra were modified by adding non-SS signals and scaling errors. The size130

of these CD deviations for each synthetic spectrum was quantified by the scaling131

factors αk and the root-mean-squared intensities of non-SS signals RMSIk listed132

in Table 1. Synthetic spectrum 1 (k= 1) was a positive control without any133

CD deviations (αk= 1.0, RMSDIk= 0.0 kMRE), spectra 2 and 6 included134

small (0.4 kMRE) and large (3.5 kMRE) non-SS deviations, respectively, but135

no scaling errors. CD deviations for spectra 3, 4, and 5 were drawn from the136

marginal distributions of experimentally observed scaling factors and non-SS137

contributions using rejection sampling.138

The shapes of the non-SS signals were chosen as sums of Gaussian functions139

SnonSS
jl =

G∑
g=1

Ig√
2πσ2

g

× e
− (λl−µg)

2

2σ2g , (2)

where the non-SS signal Sjl of protein j at wavelengths λl from 178 to 269140

nm was computed from the following randomly chosen parameters. The number141

of Gaussians G was chosen from the range 1 to 5, the relative peak intensity for142

Gaussian g Ig was chosen between -20.0 and 20.0, with a peak position µg chosen143

from 178 to 241 nm, and peak half-widths σg chosen between 2 and 37 nm. Once144

the parameters were determined, the non-SS signal at every wavelength (using145

1 nm spacing) was calculated, and the non-SS signal intensity was rescaled to146

match the previously defined RMSI values in Table 1.147

The final synthetic spectra were computed by determining the SS signals148

first, by adding the appropriately scaled non-SS signal contributions in a second149

set, and finally by rescaling the resulting CD spectrum according to the indicated150

scaling factor.151
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4 Algorithm overview152

Our newly implemented Python module SESCA bayes.py performs a Monte-153

Carlo (MC) sampling in SS space to determine the most probable SS compo-154

sition of a protein based on its measured CD spectrum. Figure 3 shows the155

flowchart of the algorithm that is divided into three phases: preparation, sam-156

pling, and evaluation.157

4.1 Preparation and input parameters158

In the preparation phase, input, output, and run parameters are read based159

on the user-provided command line arguments. If SESCA bayes.py is used as160

a Python module, an array of arguments can be processed by the function161

Read Args and passed to the Main function to run the algorithm. Arguments in162

SESCA are identified by preceding command flags (marked by the ”@” character163

in the first position. There are four input files – shown as blue parallelograms164

in Fig. 2 – that SESCA bayes accepts, each read in white-space separated data165

blocks stored as simple ascii text files.166

The CD spectrum file (specified using the @spect flag) should contain two167

columns, wavelength in nanometers (nm) and CD signal intensity in 1000 mean168

residue ellipticity (kMRE) units. This file must be specified for SESCA bayes,169

and if no command flags are provided, the first argument is automatically rec-170

ognized as a CD spectrum file.171

The side-chain correction file (specified by @corr) is an optional file to add172

baseline or sequence-dependent side-chain correction to the predicted CD spec-173

trum, which are independent of the SS composition. If the basis spectrum174

set has basis spectra to calculate side-chain contributions, these signals can be175

computed before running SESCA bayes, and added as a correction.176

The Bayesian parameter file (@par) contains several data blocks, most im-177
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portantly, the binned probability distribution function of CD deviations PRMSD,α178

(likelihood function), prior SS probability distributions for the SS composition179

P (SSj) and scaling factors P (αj), as well as the MC step parameters. If no180

parameter file is provided by the user, SESCA bayes.py uses one of two default181

parameter files (Bayes 2D SC.dat and Bayes 2D noSC.dat) found in the ”libs”182

sub-directory of SESCA, depending on whether a side chain correction file was183

provided or not. These files contain one of the two likelihood functions shown184

in Fig. 2, and uniform prior SS probability distributions. A more detailed185

description of the parameter blocks is provided in the examples sub-directory186

(examples 5).187

The basis set file (@lib) contains several data blocks for CD spectrum cal-188

culations, including a block where the CD intensity of 3-6 basis spectra at each189

wavelength (175-269 nm) is provided. Several derived basis sets are available190

in libs sub-directory, and a detailed description of the data blocks is given in191

example 1.192

In addition to the input files, SESCA bayes recognizes several additional193

command flags to modify program behavior. The number of initial SS composi-194

tions for MC sampling phase is specified by @size. The number of MC steps per195

initial SS composition is set by @iter. The @scale flag allows the user to control196

whether the measured CD spectrum is rescaled before determining the deviation197

from the predicted CD spectra or not. In the absence of these command flags,198

the values 100, 500, and 1 (yes) are used for the SS estimation.199

Finally, three command flags control the output of SESCA bayes.py; provid-200

ing a ”0” argument to any of these flags disables writing the associated output.201

The command flag @write specifies the file name for the primary output, and202

if no command flags are given, SESCA bayes automatically recognizes the sec-203

ond argument as primary output file. This file contains a summary of the204
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input parameters, binned posterior probability distributions for the SS compo-205

sitions and scaling factors, as well as the most probable SS fractions and their206

uncertainties. The command flags @proj and @data allows the user to print207

secondary output files. The @proj flag specifies a file name for heatmap-style208

two-dimensional projection of the posterior SS distribution. The projection is209

made along two SS fractions selected using the @pdim flag Finally, the flag210

@data specifies a file name for printing all the sampled SS compositions the211

primary output is computed from, along with their estimated CD deviations,212

prior and posterior probabilities. By default, only the primary output file is213

printed into ’SS est.out’, and no secondary output is written.214

4.2 Monte Carlo sampling215

To determine the most probable SS composition of the protein based on its CD216

spectrum, sampling of the SS space is required. To this aim, SESCA bayes uses217

a MC sampling scheme starting from N (set by @size) initial SS compositions,218

drawn from the prior SS distribution using rejection sampling. As the center219

part of Fig. 3 shows, at every step t of the MC sampling phase, a change220

on each of the SS compositions (Cji,t) is attempted. The change is realized221

by transferring a given SS fraction between two randomly chosen SS classes,222

yielding a new SS composition (C ′ji,t). The amount of the transferred SS fraction223

from the donor class to the acceptor class is determined based on the distribution224

specified in the Bayesian parameter file. If no distribution is provided, the225

fraction is drawn from a Gaussian distribution with a mean of 0.05 and variance226

of 0.1. To remain in the space of possible SS compositions, the transferred SS227

fraction cannot exceed the current fraction assigned to the donor class, and228

classes that currently have a fraction of zero assigned to them cannot be selected229

as donors.230
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After the changes are attempted, the posterior probabilities P ′jt of the new231

SS compositions are calculated (see Section 2) and compared to the posterior232

probabilities (Pjt) of the SS compositions before the change. The attempted233

change is accepted or rejected by applying the Metropolis criterion to the ratio234

of posterior probabilities, i.e. the change is accepted if the ratio P ′jt/Pjt is235

larger than a randomly generated number between zero and one. If the change236

is accepted, C ′ji,t is added to the sampled SS distribution and used as the initial237

SS composition Cji,t+1 in the next MC step, otherwise Cji,t is added to the238

sampled SS distribution (again) and is used in the next MC step. This procedure239

is repeated until the specified number of MC attempts is reached, and yields240

N × tmax sampled SS compositions. The sampled SS compositions resemble the241

prior SS distribution during the initial MC steps but converge towards an SS242

distribution weighted by the posterior SS probabilities.243

4.3 Sample evaluation244

The sampled SS distribution is analysed in the evaluation phase, as shown in245

the bottom part of Fig 3. To avoid the over-representation of very low posterior246

probability SS compositions, a fraction of the initially sampled SS compositions247

may be discarded from final SS distribution. This fraction can be set by the248

user through the @discard flag, otherwise, the initial 5% of SS compositions is249

discarded. The remaining probability-weighted ensemble of possible SS compo-250

sitions is used to compute the estimated SS composition Cestji for the protein, the251

estimated scaling factor αestj , as well as to approximate the discrete posterior252

probability distribution for both quantities.253

The estimated SS composition is determined by computing the mean and254

standard deviation (SD) of each SS fraction over the sampled SS compositions.255

Similarly, the most probable scaling factor is computed as the mean and SD of256
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scaling factors estimated for the sampled SS compositions. The discrete prob-257

ability distribution for both scaling factors and SS compositions are computed258

by binning all sampled SS compositions and scaling factors using the parame-259

ters extracted from the prior distributions provided in the Bayesian parameter260

file. The number of sampled SS compositions and scaling factors in each bin is261

normalized by the final sample size to obtain the discrete probability distribu-262

tions. The computed estimates, their uncertainties and the discrete probability263

distributions are all written in the primary output file (defined by the @write264

flag) and returned as output by the SESCA bayes module. If requested (@proj265

flag), the sampled SS compositions can be printed in a separate file. Finally,266

the two-dimensional projection of posterior SS distribution along two chosen SS267

fractions can also written into a separate output file (@proj flag), formatted as268

a human readable heat map, that can be easily processed into images using e.g.269

Python’s Matplotlib module [9] or external visualization programs.270

5 Testing the Algorithm271

5.1 Accuracy and precision272

The accuracy and precision of the Bayesian SS estimation was tested using the273

10 CD spectra listed in Table 1. Six of these spectra (k= 1-6) are synthetic spec-274

tra that were generated from a given SS composition, but modified by adding275

artificial non-SS signals and scaling errors (see Section 3.2) to emulate CD devi-276

ations in real measured spectra. The remaining four CD spectra (k= 7-10) are277

measured spectra from the SP175 set [8], for which the estimated SS composi-278

tions are compared to those extracted from the (protein data bank) structure279

of the reference protein. Table 1 also lists the (estimated) CD deviations of all280

ten CD spectra, quantified by the scaling factors αk and the root-mean-square281
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intensity (RMSIk) of non-SS signals in each spectrum.282

To test the accuracy of SESCA bayes, we estimated the SS composition283

of the above ten CD spectra using the same DS-dT basis set with three SS284

classes (α-helix,β-strand, and Other) that was used to generate the synthetic285

spectra. The obtained Bayesian estimates for the test set are summarized in286

Table 2. This table includes the mean and SD (in parentheses) of SS fractions287

of the sampled posterior distributions, as well as the total SS deviation from288

the reference SS compositions, computed according to289

∆SSk =
1

2

F∑
i=1

|Cestki − C
ref
ki |, (3)

where Cestki are the estimated SS fractions and Crefki are the reference SS fractions290

listed in Table 1.291

The obtained SS fractions show a fairly consistent 0.03 to 0.06 uncertainty.292

As expected, 27 of 30 SS fractions are within two SD of their reference value,293

with no significant difference in accuracy between synthetic and measured CD294

spectra. In addition, the calculated total SS deviations (∆SS) from the reference295

structures range between 0.03 and 0.12, and eight of ten values are also smaller296

than the estimated uncertainty of the estimation (two SD) that was calculated297

from the individual SD of SS fractions (σki) according to298

σk =
1

2

√√√√ F∑
i=1

σ2
ki. (4)

5.2 Comparison to deconvolution299

Next, we compare the accuracy and precision of the Bayesian estimates to that300

of SS estimates obtained through spectrum deconvolution. To this aim, we esti-301

mated SS compositions with the deconvolution module of SESCA (SESCA deconv)302
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for the same ten CD spectra (Table 1), using the same DS-dT basis spectrum set.303

The deconvolution was carried out using the most accurate protocol (method304

D2) tested previously [6]. This method constrains the basis spectrum coefficients305

to positive values, but normalizes them to unity only after the search for the best306

approximation. The SS compositions obtained using SESCA deconv are listed307

in Table 3, along with the total SS deviations from reference SS compositions308

(found in Table 1). The total SS deviation of deconvolution estimates (∆SSk)309

ranges from 0.0 to 0.29. The mean SS deviation for the whole set (0.08) is310

similar to that of the Bayesian estimates (0.07), but shows a significantly larger311

scatter (0.9 vs. 0.03). All three CD spectra with larger than average SS devi-312

ations (k= 3,4,8) have large non-SS contributions (2.0-2.9 kMRE), which is in313

line with our previous findings that non-SS contributions may be detrimental314

to the accuracy of deconvolution methods.315

Although the SESCA deconv module does not provide information on the316

uncertainty of individual SS fractions, many SESCA basis sets (including DS-317

dT) include a calibration curve to estimate the expected total SS deviation if318

the true SS composition is unknown. This curve was computed from 4.9 ×319

105 synthetic spectrum-structure combinations, which were binned according to320

their estimated non-SS contributions (RMSDj), to provide an expected mean321

and SD of SS deviations for a given (rescaled) RMSD. Comparing the true SS322

deviations of the deconvolution results with their estimated values shows that323

these estimates correctly describe the precision of the deconvolution method:324

six of ten ∆SSk values are within 1 SD of the estimated total deviation, and325

all ten fall within 2 SD. However, the average uncertainty of the deconvolution326

(0.09) is again considerably larger than that of the Bayesian SS estimates (0.04),327

and it increases with increasing non-SS contributions.328

In summary, Bayesian SS estimation and spectrum deconvolution provides329
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SS estimates that – in most cases – have a similar accuracy. However, Bayesian330

SS estimates are considerably more precise when significant non-SS contribu-331

tions are present in the measured spectrum. Further, the Bayesian approach332

provides uncertainties for each individual SS fraction as well as the optimal scal-333

ing factor for the measured CD spectrum, which is an additional advantage of334

the new method.335

5.3 Example spectrum analysis336

To further investigate the differences between the two methods, we analysed the337

SS estimates for the CD spectrum with the largest difference between the de-338

convolution and Bayesian SS estimates. Figure 4A shows the obtained posterior339

SS probability distribution for synthetic spectrum 3, which contains larger than340

average non-SS contributions (2.02 kMRE). The heatmap shown in Fig. 4A341

illustrates that the most likely SS compositions are indeed clustered around the342

SS composition the synthetic spectrum was created from (shown as a red cross),343

with the highest posterior probability regions (shown in dark green) located in344

the immediate (∆SSk < 0.05) vicinity of correct SS composition. However, the345

SS composition determined by deconvolution (purple cross) has a much higher346

α-helix content and it is not in a high-probability region in the Bayesian SS347

estimation.348

To examine why the two algorithms evaluate the proposed SS compositions349

differently, in Fig. 4B we computed the predicted CD signals of the two es-350

timated SS compositions, rescaled them, and compared them to the synthetic351

spectrum, as is done during the deconvolution process. The figure shows that352

with the proper scaling factor both SS compositions approximate the synthetic353

spectrum well, but the deconvolution estimate (purple dashed line, RMSDj :354

1.31 kMRE) fits slightly better than the Bayesian estimate (blue dashed lines,355
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RMSDj : 1.71 kMRE).356

In contrast, the Bayesian SS estimation rescales the synthetic CD spectrum357

to match the predicted spectra, and evaluates the likelihood of the SS com-358

positions based on the joint probability of their non-SS contributions RMSDj359

and scaling factor αj , as shown in Fig 4C. Although the two estimates have a360

comparable RMSD in this method as well, the deconvolution estimate requires361

a scaling factor (αj : 1.99) to achieve a good agreement that is shown to be very362

unlikely according to the joint-probability map in Fig. 3. Comparing the two363

estimated SS signals (dashed lines) to the SS signal of the true SS composition364

(in red) illustrates how considering scaling factors improves the precision of the365

SESCA bayes. In this case, eliminating SS compositions with unlikely scaling366

factors from the sampled distribution allowed a fairly accurate (RMSD: 0.99367

kMRE) approximation of the true SS signal.368
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Tables

Table 1: SS compositions and CD deviations of model proteins. Columns show
the index and name of the respective model protein, the fraction of its amino
acids assigned to the SS classes α-helix, β-strand, and Other, as well as scal-
ing factors αk and root-mean squared intensities RMSIk of non-SS signals to
quantify scaling errors and non-SS contributions in the protein CD spectrum,
respectively. Synth denotes synthetic spectrum in the proteins name, whereas
Lysm, Dqd-1, and Sub-C abbreviate Lysozyme, Dehydroquinate dehydratase I,
and Subtilisin Carlsberg, respectively. Note that SS fractions, scaling factors,
and non-SS contributions for all synthetic proteins (k= 1-6) were parameters
used to generate their CD spectrum, whereas for real reference proteins (k=
7-10), all values were computed based on their measured spectra and protein
data bank structures (193L, 2DHQ, 1KU8, and 1SCD, respectively).

k protein α-helix β-strand Other αk RMSIk
1 Synth-1 0.11 0.40 0.49 1.0 0.0
2 Synth-2 0.41 0.20 0.39 1.0 0.4
3 Synth-3 0.43 0.10 0.47 1.2 2.0
4 Synth-4 0.27 0.26 0.47 1.6 2.7
5 Synth-5 0.00 0.33 0.67 1.4 0.7
6 Synth-6 0.30 0.40 0.30 1.0 3.6
7 Lysm 0.35 0.03 0.62 1.1 1.0
8 Dqd-1 0.43 0.18 0.39 1.1 2.9
9 Jacalin 0.01 0.28 0.71 0.3 3.2
10 Sub-C 0.30 0.12 0.58 0.4 1.2
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Table 2: Bayesian secondary structure estimates. The table lists the index and
name of the model protein, the estimated fraction of its amino acids assigned
to SS classes α-helix, β-strand, and Other, as well as the total SS deviation
∆SSk from the reference SS compositions shown in Table 1. The uncertainty
(standard deviation) of each SS fraction and deviation is given in parentheses.
Estimates that are more than 2 SD away from their reference value are high-
lighted in red.

k protein α-helix β-strand Other ∆SSk
1 Synth-1 0.14 (0.05) 0.44 (0.06) 0.43 (0.04) 0.06 (0.04)
2 Synth-2 0.49 (0.06) 0.19 (0.06) 0.32 (0.06) 0.08 (0.05)
3 Synth-3 0.45 (0.06) 0.12 (0.05) 0.43 (0.05) 0.03 (0.04)
4 Synth-4 0.22 (0.04) 0.21 (0.05) 0.57 (0.04) 0.09 (0.04)
5 Synth-5 0.03 (0.04) 0.26 (0.03) 0.71 (0.05) 0.07 (0.04)
6 Synth-6 0.36 (0.05) 0.32 (0.04) 0.31 (0.06) 0.08 (0.04)
7 Lysm 0.38 (0.05) 0.04 (0.05) 0.57 (0.05) 0.05 (0.04)
8 Dqd-2 0.48 (0.06) 0.06 (0.05) 0.47 (0.05) 0.12 (0.05)
9 Jacalin 0.01 (0.04) 0.31 (0.06) 0.68 (0.06) 0.03 (0.05)
10 Sub-C 0.26 (0.05) 0.13 (0.04) 0.61 (0.04) 0.04 (0.04)

Table 3: Secondary structure estimates based on spectrum deconvolution. The
table lists the index and name of the model protein, the estimated fraction of its
amino acids assigned to SS classes α-helix, β-strand, and Other, as well as the
total SS deviation ∆SSk from the reference SS compositions shown in Table 1.
The values in parentheses after ∆SSk show the mean and SD of the estimated
total SS deviation computed from the rescaled RMSD between the measured
(generated) CD spectrum and predicted spectrum of the SS estimate.

k protein α-helix β-strand Other ∆SSk
1 Synth-1 0.11 0.40 0.49 0.00 (0.00 ± 0.02)
2 Synth-2 0.41 0.20 0.39 0.00 (0.05 ± 0.03)
3 Synth-3 0.72 0.03 0.24 0.29 (0.16 ± 0.09)
4 Synth-4 0.19 0.22 0.59 0.12 (0.08 ± 0.05)
5 Synth-5 0.01 0.33 0.66 0.01 (0.06 ± 0.04)
6 Synth-6 0.31 0.31 0.37 0.08 (0.14 ± 0.09)
7 Lysm 0.34 0.06 0.60 0.03 (0.07 ± 0.05)
8 Dqd-2 0.51 0.04 0.45 0.14 (0.09 ± 0.06)
9 Jacalin 0.00 0.35 0.65 0.07 (0.20 ± 0.09)
10 Sub-C 0.25 0.13 0.62 0.05 (0.07 ± 0.05)
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Figure 1: Secondary structure probability calculation scheme. The figure de-
picts the algorithm to compute the posterior probability of a given secondary
structure j, based on its prior probability, and the deviations between its pre-
dicted CD signal and a given measured CD spectrum. Input data are depcited
as blue parallelograms, operations as white rectangles, and decisions as white
diamonds.
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Figure 2: The panels depict the heat map representation of two likelihood func-
tions provided for Bayesian SS estimation with SESCA. The estimated joint-
probability distributions are shown for basis spectra that A) predict CD sig-
nals solely from SS information (left) and B) also include CD corrections from
sequence-based side-chain information (right). Panels on the top and bottom
show the same probability distributions using a linear and logarithmic color
scale, respectively.
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Figure 3: Schematic workflow of the Bayesian secondary structure estimation
module in SESCA. The scheme depicts input data files as blue parallelograms,
data on the sampled SS compositions are shown as a red parallelogram. Oper-
ations are depicted as white rectangles, and decisions are shown as white dia-
monds. Posterior probability calculation operations (see Fig. 1) are highlighted
as yellow rectangles on the scheme.
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Figure 4: SS estimation for a synthetic CD spectrum. The figure compares
the true SS composition (shown in red) with SS compositions obtained from
Bayesian SS estimation (in blue) and spectrum deconvolution (in purple). A)
shows the posterior probability distribution of sampled SS compositions in a heat
map representation and indicates the true SS composition and the deconvolution
SS estimate as crosses. The SS compositions, estimated scaling factors, and SS
deviations are also listed in a tabulated format on the top. The difference on
how the two estimates are evaluated by B) the deconvolution and C) Bayesian
SS estimation are also shown. During deconvolution, the predicted CD signal of
SS estimates is rescaled to match the measured CD spectrum, and the measure
of quality is solely the RMSD. In the Bayesian approach, the measured spectrum
is rescaled to match the predicted SS signals, and both the RMSD-s and the
scaling factors are used to determine the most likely SS composition.
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