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Abstract

X-ray free electron lasers allow to create and probe double core holes in molecules via
successive ionization in considerable amount. The properties of these double core ionized
states are in particular relevant for the radiation damage in X-ray coherent diffractive
imaging (CDI) experiments with single molecules. In this thesis the Auger decay of dou-
ble core ionized states in small molecules is investigated via quantum chemical ab-initio
methods. To model the emitted Auger electrons at continuous energy levels the single
center method is used, in which the electronic wave function is described on a radial grid
using spherical harmonics. As shown for the example of a water molecule, the proton
dynamics induced by the double core ionization is reflected in the Auger spectrum by
marked tails on the high-energy part of each spectral peak. The life time of double
core holes in molecules is significantly reduced compared to that of single core holes
due to the core hole induced screening effects of the valence electrons. This mechanism
is explained by a simple model from which a relation for the decay rate and valence
electron population is derived. Possible consequences of these results for X-ray diffrac-
tion experiments are: First, even for pulses shorter than 10fs the diffraction patterns is
biased by the core hole induced rearrangement of the electronic valence structure. Sec-
ond, the overall ionization rate is enhanced because of the faster refilling of double core
holes.
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Zusammenfassung

Röntgen Freie Elektronen Laser ermöglichen es Doppel-K-Schalen Löchern in Molekülen
in aufeinanderfolgenden mehrfachen Ionisationsschritten in bedeutender Anzahl zu erzeu-
gen. Die Eigenschaften dieser zweifach ionisierten Zustände ist insbesondere relevant
für die Strahlungsschäden bei Beugungsexperimenten mit kohärenter Röntgenstrahlung
zur Bildgebung einzelner Moleküle. In dieser Arbeit wird der Auger Zerfall doppelt
K-Schalen ionisierter Moleküle mittels quantenchemischer ab-initio Methoden untersucht.
Zur Beschreibung des emittierten Auger Elektrons im kontinuierlichen Energiespektrum
wird dabei die Ein-Zentrums Methode verwendet, in der die elektronische Wellenfunk-
tion auf einem radialen Gitter beschrieben wird unter Verwendung von sphärischen Har-
monischen. Wie anhand des Wassermoleküls gezeigt wird, ergeben sich durch die Doppel-
K-Loch induzierte Protonendynamik in dem Auger Spektrum ausgeprägte Flanken im
höherenergetischen Teil jeder Spektralspitze. Die Lebensdauer von Doppel-K-Schalen
Löchern in Molekülen ist deutlich verringert im Vergleich zu einfachen K-Löchern durch
die K-Loch induzierten Abschirmeffekte der Valenzelektronen. Dieser Mechanismus wird
durch ein einfaches Modell erklärt aus dem eine Beziehung zwischen Zerfallsrate und
Valenzelektronenpopulation abgeleitet. Mögliche Konsequenzen dieser Ergebnisse für
Röntgenbeugungsexperimente sind: Erstens, auch für Röntgenpulse kürzer als 10fs wird
das Beugungsbild durch die K-Loch induzierten Umstrukturierungen der Valenzelektro-
nen beeinflußt. Zweitens, die Gesamt-Ionisationsrate ist erhöht aufgrund der schnelleren
Neubesetzung der K-Löcher.
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1 Introduction

Since the first experiments by Friedrich et al. [35], X-ray crystallography has become
an established and essential tool for investigating the structure of matter. The seminal
reconstruction of nucleic acids by Watson et al. [99] and the structure determination of
myoglobin by Kendrew et al. [56] are two of the milestones for applying this technique
on biological samples. Today, X-ray crystallography is the most important method for
structure determination of biological macromolecules [31, 78]. The major limitation of
this method is, however, the necessity of prior crystallization of the sample. The newly
available XFEL (X-ray free electron lasers) holds the promise to overcome this drawback.
One of the perspective applications of XFELs are coherent diffractive imaging (CDI) ex-
periments with single non-crystalline samples [37, 71]. A primary goal of this concept is
the determination of the structure of bio-molecules in atomic resolution, without prior
crystallization. In the field of structural biology, this technique would be of high rel-
evance, as it would give insight into the structure of macromolecules such as certain
membrane proteins which cannot be crystallized.

According to the concept of CDI, a sample is exposed to an intense X-ray pulse with
large spatial coherence. At the high intensity provided by XFELs the recording of the
elastically scattered X-ray radiation enables the reconstruction of the electron density
distribution in the sample and thus allows the investigation of the structure of the sample
in atomic resolution. However, when exposed to this large amount of ionizing radiation,
a bio-molecule will suffer from severe radiation damage and it will eventually loose its
structural integrity in a Coulomb explosion. To circumvent this problem, the X-ray pulse
has to be short enough, such that diffraction at the molecule occurs before the relevant
structure of the molecule is destroyed. Further, many diffraction patterns of identical
samples have to be accumulated to yield sufficient scattering data. This concept, known
as diffract and destroy strategy, is illustrated in Fig. 1.1.

For nano-crystallized biological samples, diffract and destroy experiments with ultra-
short X-ray pulses from a XFEL source have been successfully performed recently [18,
67, 76]. The success of this method relies on the mechanism of self-terminating diffrac-
tion [6]. As soon as the crystalline order is lost as a consequence of radiation damage,
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1 Introduction

Figure 1.1: Illustration of the diffract and destroy strategy: A beam of identical samples
is hit with the X-ray beam. The diffraction patterns are recorded, while the
sample is destroyed. The collected diffraction patterns are classified for the
different orientations, from which the sample structure is then reconstructed.
Figure taken from Ref. [15].

the coherent Bragg diffraction signal from the crystal decreases. The damaged molecules
do not produce their own specific diffraction pattern, so that their homogeneous back-
ground signal can be separated from the Bragg diffraction of the intact molecules. By
accumulating several diffraction patterns of identical samples in sequential shots, it was
possible to maintain a sufficient signal and reconstruct the intact molecular structure in
atomic resolution.

To investigate under which circumstances this principle could also work for non-
crystalline, single molecule samples is crucial. An important parameter in this context
is the timescale at which the molecule dissociates under the influence of the heavy ion-
izing radiation. It is well known from experiments and atomic calculations, that the
primary ionization events due to X-ray radiation are core shell photo-ionizations. For
the biologically most relevant elements carbon (C), nitrogen (N), and oxygen (O) core
shell ionization contributes approximately 90 to 95% to the total ionization cross section
at photon energies of ' 8 keV [101]. At the same photon energy, the elastic scattering
cross section, which is responsible for the formation of the diffraction image, is about ten
times smaller than that for ionization [7]. After ionization, core vacancies in the C, N,
and O atom shells are refilled via Auger decay or fluorescence with a branching ratio of
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1 Introduction

approximately 99% for the Auger decay [60].

Recently, it has been demonstrated that the XFELs are capable to also produce double
K-shell vacancies in significant amounts [25, 29, 48, 80, 102]. The creation of these highly
excited electronic states is possible because the ionization rate is of the same magnitude
as the decay rate of the K-vacancies, such that there is a decent probability that the
second electron is stripped off the K-shell before the first K-vacancy is refilled. With an
empty K-shell, the core vacant electronic states have a strongly reduced ionization cross
section, such that the respective atom becomes temporarily nearly transparent to X-ray
radiation — a mechanism known as frustrated absorption [48, 102]. Electronic states with
empty K-shell are not only interesting on its own [8, 17, 25, 61, 62, 90], but also open
up the question, whether the induced transparency of double K-holes might effectively
delay the radiation damage in a CDI experiment [68].

Whereas the radiation damage mechanisms of XFEL radiation for atoms are fairly well
understood, much higher complexity for molecular or atomic cluster samples is expected.
First estimates of the structural disintegration process of a bio-molecule have been made
based on molecular dynamics simulations [71]. In these simulations, nuclei were prop-
agated classically under the influence of force fields describing chemical bonds. Addi-
tionally, Coulomb forces mimic the rapid charging of the molecule via photo-ionization
and Auger decay processes. The investigated atomic displacements and the simulated
diffraction patterns computed in this study suggest that a structure determination via
CDI in atomic resolution might be possible for X-ray pulse durations shorter than a few
femtoseconds. Later studies [41, 45, 46, 52–54, 104] also modeled the dynamics of released
photo- and Auger electrons. These studies revealed that due to the high ionization lev-
els, the emitted electrons become trapped within the sample by the appreciable Coulomb
force and screen the high charge in the center of the sample. The screening by these quasi
unbound electrons delays the dissociation of the inner core of the sample such that the
destruction of the sample proceeds much faster in the outer boundary. As a consequence,
it has been suggested that a bio-molecule covered with a layer of, e.g. water, might resist
XFEL radiation substantially longer [46].

The validity of above simulations relies on the photo ionization cross sections and
Auger decay rates which determine the speed at which the sample charges up. The
cross sections and Auger decay rates used are mostly estimated from atomic calculations
and — due to the complexity of the problem — only few attempts have been made to
investigate ionization and Auger decay involving highly ionized states in molecular cal-
culations [58] or atomic calculations in an embedded charged environment [4, 94]. Other
relevant molecular effects like the migration of electron density, which directly changes
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1 Introduction

the diffraction pattern and indirectly might influence the further atomic motion as well
as subsequent ionization processes were not modeled in these simulations. Recent experi-
ments [30, 33] with small molecules revealed the relevance of these processes, and call for
a better understanding of the electronic radiation damage in molecules. A detailed inves-
tigation of electron dynamics and Auger decay in molecules after multiple ionization via
quantum mechanical ab initio calculations would thus provide crucial insight into the ef-
fective radiation damage in CDI experiments and allows to give more reliable parameters
to simulate the XFEL induced molecular dissociation.

Apart from the radiation damage in CDI experiments, the electronic structure of mul-
tiple core hole states in molecules also received considerable attention, because the spec-
troscopy of multiple hole states allows a more sensitive probing of the electronic structure
than single core holes [8, 17, 61, 62, 90]. In particular, probing electronic states in which
core holes are located at different nuclear sites may give insight into the geometry and
the electronic structure of a molecule, because their spectroscopic properties sensitively
depend on how far the two core holes in the molecule are spatially separated. Computa-
tional efforts which address molecular ionization and Auger decay spectra are an essential
requirement to understand and interpret spectroscopic measurements of these multiple
core ionized states. Thus, also from this perspective, ab inito studies of the Auger decay
of multiple core ionized molecules are desirable.

Despite of the large demand for investigating these processes, only few computational
studies have so far addressed the Auger decay in molecules and even fewer considered
multiple core ionization. The major challenges in the computational description of Auger
decay processes in molecules are:

1. The computational description of highly excited electronic states in molecules.

2. The accurate description of the delocalized continuum wave function and of the
localized core electrons within the same framework.

The first challenge results from the strong correlation in the involved core hole states or
multiple ionized valence states. To address these electronic states, the so called algebraic
diagrammatic construction [59] or the configuration interaction method [2] has been used.
The second challenge results from the fact that for Auger and photo-ionization processes
an electron is promoted from a localized to a completely delocalized state. Localized elec-
trons are described in common quantum chemistry approaches with basis sets of Gaussian
functions. Previous approaches have represented both the localized bound and the de-
localized continuum electrons in the vicinity of the molecules with Gaussian functions
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1 Introduction

using the so called Stieltjes imaging method [16]. In particular for the high energetic con-
tinuum, this technique requires an enormous amount of basis functions [58] which puts
strong limitations on the calculation. In another approach, known as the single center
method [27, 103], the continuum wave function is expanded in spherical harmonics on a
radial grid. This latter approach offers an acceptable representation also of high energy
continuum states, but its application is limited to small molecules with high symmetry
due to the computational costs which arise for high electronic angular momentum. In
more simplified approaches an explicit description of the continuum wave function is
avoided. In the one-center approach [5, 23, 84], molecular Auger transitions are calcu-
lated using amplitudes estimated from atomic calculations. Furthermore, Auger spectra
have been estimated based on a population analysis [69, 98] or based on statistical con-
siderations [89], in which the weights of the final state wave function on components with
two valence holes are used as line intensities. Although these methods have given quali-
tative agreement with experiments in several cases, the effect of the molecular continuum
wave function cannot generally be neglected. In particular, for reliable calculations of
absolute transition rates, an explicit description of molecular continuum wave functions
has to be considered [23, 103].

To address the ionization and Auger decay processes in a non-linear, polyatomic
molecule, I have developed in this thesis an ab initio quantum chemistry approach to cal-
culate ionization cross sections and Auger decay rates. The developed procedure is based
on the single center method [27, 103] for the description of the continuum electron and on
the configuration interaction method for the bound electrons.

Using this procedure I investigated the electron dynamics induced by double K-shell
ionization in small molecules within the short timescales relevant for CDI experiments.
The calculations provide emission spectra of Auger electrons, which may help to interpret
future experimental data. They also demonstrate the immediate impact of multiple
ionization on the electronic structure and on the nuclei dynamics. Furthermore, absolute
decay rates of single and double K-shell vacancies in small molecules were obtained. For
the dependency of the core hole lifetimes on the chemical environment, a qualitative
relation was derived, which provides essential parameters to model the radiation damage
in CDI experiments with macromolecules.

Outline of the thesis

The outline of this thesis is as follows. Chapter 2 briefly introduces the theoretical
methods, the underlying assumptions and limitations. Further, I discuss the numerical
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1 Introduction

implementation of the theoretical approach and give the details of the performed cal-
culations. In the following chapter 3, I present the obtained results. It contains two
published articles, on which this cumulative thesis is based. The first article [50] stud-
ies the ionization dynamics and the Auger decay of a single water molecule exposed to
high intense X-ray radiation. The second article [51] systematically investigates single
and double K-hole lifetimes in first-row hydrides. Further results regarding Auger decay
transitions in acetylene are presented at the end of chapter 3. In chapter 4, I discuss
the relevance of these results from a broader perspective and give an outlook on future
work.

6



2 Theory and numerical implementation

In this chapter, I introduce the theoretical models and the methods that were used for
the calculations. To clarify the notation, the general methods for electronic structure
calculations are briefly introduced in the first section. In the second section, concepts of
X-ray-matter interaction are presented. By stepping through the derivation of the Pauli
master equation starting from first principles, I illustrate the necessary approximations
and discuss the conditions under which they are valid. Based on this derivation, the rel-
evant X-ray-molecule interaction processes are discussed. Finally, I describe the concept
of the single center method and the details of the numerical procedure I have used to
obtain the electronic continuum wave function.

Throughout this thesis, atomic units (a.u.) are used. A list of fundamental constants
in atomic and in standard units is given in Table 2.1. Table 2.2 lists the conversion of
the most important units.

Table 2.1: Fundamental constants in standard (SI) and atomic units.

Quantity Symbol SI value & unit a.u. value
Planck constant divided by 2π ~ 1.05 · 10−34 J · s 1
elementary charge: e 1.60 · 1019 C 1
electron mass: me 9.11 · 10−31 kg 1
Coulomb’s constant: 1/(4πε0) 8.987 · 109 Nm2/C2 1
speed of light: c 299.8 · 106 m/s 1/α ' 137

Table 2.2: Conversion of units.

Quantity Formula SI conversion
Length 1a0 := 4πε0~2/(mee

2) 1 a.u.=̂5.291 · 10−11 m
Energy 1EHartree := mee

4/(4πε0~2) 1 a.u.=̂27.211 eV
Time ~/EHartree 1 a.u.=̂2.418 · 10−17 s
Rate EHartree/~ 1 a.u.=̂4.14 · 1016 1/s

7



2 Theory and numerical implementation

2.1 Electronic structure calculation

In this section, I summarize the techniques for the electronic structure calculation used in
this thesis, which are the Hartree-Fock approximation and the configuration interaction
approach. I first introduce the Born-Oppenheimer approximation which yields a factor-
ization of the molecular eigenstate into an electronic and a nuclear part. Then, I briefly re-
view the main aspect of the Hartree-Fock approximation and the configuration interaction
(CI) approach to obtain the many electron wave function.

2.1.1 Born-Oppenheimer approximation

The total Hamiltonian of a molecule is given in the non-relativistic limit by

HM =

nuclei∑
n

 P 2
n

2Mn
+

nuclei∑
n6=n′

ZnZn′

|Rn −Rn′ |


+

electrons∑
i

p2
i

2
+

1

2

electrons∑
i′ 6=i

1

|ri − ri′ |
−

nuclei∑
n

Zn
|ri −Rn|

 , (2.1)

where Rn denotes the position of the nuclei, which have charge Zn and mass Mn, ri
are the positions of the electrons, Pn and pn are the nuclei and electron momenta,
respectively.

The Born-Oppenheimer approximation assumes that, due to the much larger massMn,
the nuclear motion can be neglected when considering the fast electronic motion, such
that the total wave function can be written as a product of an electronic wave function
|ψ(R)〉, which parametrically depends on all the nuclear coordinates R = (R1,R2, . . . ),
and a nuclear wave function |χ〉. The operators of electronic coordinates ri and pi only
act on the electronic wave function |ψ(R)〉 so that the electronic eigenstate |ψj(R)〉 is
defined by the electronic eigenvalue equation

Hel(R)|ψj(R)〉 =

electrons∑
i

p2
i

2
+

1

2

electrons∑
i′ 6=i

1

|ri − ri′ |
−

nuclei∑
n

Zn
|ri −Rn|

 |ψj(R)〉

= Eel
j (R)|ψj(R)〉. (2.2)

The eigenvalue Eel
j (R) depends on the nuclear coordinates R and defines, together with
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2 Theory and numerical implementation

the nuclear-nuclear electrostatic term in Eq. 2.1, the nuclear potential

Uj(R) :=

nuclei∑
n6=n′

ZnZn′

|Rn −Rn′ |
+ Eel

j (R) (2.3)

for the electronic state j. The remaining nuclear eigenvalue equation then reads

Hnuc|χjν〉 =

(
nuclei∑
n

P 2
n

2Mn
+ Uj(R)|χjν〉 = Ej,ν

)
|χjν〉. (2.4)

Thus, in the Born-Oppenheimer approximation, the eigenfunction of the total (nuclear
and electronic) Hamiltonian, which depends on all nuclear coordinates R and all elec-
tronic coordinates r = (r1, r2, . . . ), is given by

Ψj,ν(r,R) = 〈R, r|Ψj,ν〉 = 〈R|χjν〉〈r|ψj(R)〉, (2.5)

where the index j indicates the electronic eigenstate and the index ν denotes the molec-
ular vibrational state, i.e. the nuclear eigenstate.

In the following two subsections, I consider the solution of the electronic Hamiltonian
Hel(R) (Eq. 2.2). To improve the readability, I will drop the additional parameter R in
the electronic Hamiltonian Hel and the electronic wave function |ψj(R)〉, keeping in mind
that they both parametrically depend on the nuclear positions.

2.1.2 Hartree-Fock approximation

To solve the many particle problem, a popular approach in quantum chemistry is to
approximate the many particle interaction by a mean field. This concept is known as
the Hartree-Fock approximation, which I will now illustrate for the electronic Hamilto-
nian.

The electronic HamiltonianHel in Eq. 2.2 forN electrons reads

Hel =
N∑
i

p2
i

2
−

N∑
i

nuclei∑
n

Zn
|ri −Rn|

+
1

2

∑
i′ 6=i

1

|ri − ri′ |
, (2.6)

where the sum is taken over all N electrons, Zn is the charge of the n-th nucleus at
position Rn, pi and ri is the momentum and position of electron i. Introducing a
single particle basis φα, the electronic Hamiltonian is rewritten in second quantization
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2 Theory and numerical implementation

as
Hel =

∑
αβ

〈α|h|β〉c†αcβ +
1

2

∑
αβγδ

〈αβ| 1

r12
|γδ〉c†αc†βcδcγ , (2.7)

where c†α is a creation operator of an electron with one particle spin wave function |φα〉,
satisfying the fermionic permutation rules

[cα, cβ] = 0,
[
cα, c

†
β

]
= δα,β. (2.8)

In Eq. 2.7, the one-particle interaction terms have been abbreviated as

〈α|h|β〉 :=

∫
drφ∗α(r)

(
−∆

2
−
∑
A

ZA
|r−RA|

)
φβ(r), (2.9)

and the two-particle Coulomb integral as

〈αβ| 1

r12
|γδ〉 :=

∫
dr1dr2φ

∗
α(r1)φ∗β(r2)

1

|r1 − r2|
φγ(r1)φδ(r2). (2.10)

Note that the basis functions φ are meant to include the spin degree of freedom, such
that Eq. 2.9 is non-zero only when the spin quantum numbers of basis function φα and
φβ are equal and, accordingly, Eq. 2.10 is non-zero only when the spin quantum numbers
of basis function φα and φγ as well as φβ and φδ are equal.

To introduce the Hartree-Fock mean field, the electronic HamiltonianHel is modified by
approximating the two-electron terms in Eq. 2.7 by pairwise averaging over an electronic
mean field state |HF〉 [83], i.e.

2c†αc
†
βcδcγ 'c†αcδ〈HF|c†βcγ |HF〉+ c†βcγ〈HF|c†αcδ|HF〉

−c†αcγ〈HF|c†βcδ|HF〉 − c†βcδ〈HF|c†αcγ |HF〉. (2.11)

Inserting this approximation into the original Hamiltonian Hel yields the Hartree-Fock
Hamiltonian

HHF =
∑
αβ

〈α|h|β〉+
∑
γδ

1

2

(
〈αδ| 1

r12
|γβ〉 − 〈αδ| 1

r12
|βγ〉

)
〈HF|c†δcγ |HF〉

 c†αcβ, (2.12)

where the symmetry of the Coulomb integral 〈αβ| 1
r12
|γδ〉 = 〈βα| 1

r12
|δγ〉 has been ex-

ploited. The Hartree-Fock state |HF〉, which is used for the mean field evaluation, solves

10



2 Theory and numerical implementation

the eigenvalue problem
HHF|HF〉 = EHF|HF〉, (2.13)

self-consistently. Note that the Hartree-Fock state |HF〉 does not necessarily need to be
the ground state.

The reduction to an effective single particle interaction Hamiltonian allows to solve the
eigenvalue problem forN electrons by the single Slater determinant

|HF〉 = c†iN . . . c
†
i2
c†i1 |vac〉, (2.14)

where |vac〉 is the vacuum state and c†i is the fermionic creation operator for an electron
spin-orbital 〈r|φi〉. The spin-orbitals 〈r|φi〉 are expanded in the one-particle basis by
coefficients Cα,i,

|φi〉 :=
∑
α

Cα,i |φα〉. (2.15)

To determine the matrix C composed of the column vectors Ci, the variational princi-
ple is used, that is, if C is chosen such that |HF〉 solves Eq. 2.13 for an eigenvalue EHF,
small variations on the energy expectation value for the varied solution C + ηC′ should
vanish in first order of η, i.e.

∂

∂η
E{C + ηC′} :=

∂

∂η

〈HF{C + ηC′}|HHF|HF{C + ηC′}〉
〈HF{C + ηC′}|HF{C + ηC′}〉 = 0. (2.16)

By additionally requiring the coefficient vectors Ci, i.e. the column vectors of the matrix
C, to be orthonormal, ∑

α

Ci,αC
†
α,j = δi,j , (2.17)

one obtains in a few steps [87, pp. 108-129] the Hartree-Fock equation for the coefficient
vectors Ci,

∑
β

〈α|h|β〉+
∑
γ,δ

〈αδ| 1

r12
|γβ〉 − 〈αδ| 1

r12
|βγ〉

occ∑
j

C†j,δCγ,j

Cβ,i =εiCα,i, (2.18)

in compact notation written as

F [C] Ci = εiCi. (2.19)

11



2 Theory and numerical implementation

Numerical solution of the Hartree-Fock equations

Depending on the desired electronic state, different schemes of spin-restrictions for the
coefficient vectors Ci were used in the calculations performed in this thesis. For closed
shell states in which all electrons are spin-paired the spin symmetry was exploited by
requiring that the coefficient vectors for the two spin populations are equal. This proce-
dure is known as the restricted Hartree-Fock method (RHF). For open shell states with
one or more unpaired electron spins, the unrestricted Hartree-Fock method (UHF) with
no constraints on the coefficients was used. When the obtained molecular orbitals in
the Hartee-Fock calculation were used as basis for later calculations (see the following
subsection), restricted open shell Hartree-Fock calculations (ROHF) were performed, in
which also for open shell states it is required that for both spin populations the coefficient
vectors Ci are the same.

To numerically solve for the coefficient vectors Ci and orbital eigenvalues εi in Eq. 2.18,
I used the Hartree-Fock procedure provided by the psi3 [24] or the gaussian09 [36] quan-
tum package. Basically, the solution for the coefficients C is found by iteratively solving
the eigenvalue problem until the eigenvectors of the Fock Matrix F [C] are consistent with
the set of coefficient vectors Ci from which the Fock matrix has been calculated. Usually,
these calculations converge to an approximate description of the electronic ground state
for the respective number of electrons and spin assignment. To also obtain an approxi-
mate description for core ionized states, convergence to this desired state was achieved by
choosing the initial guess for the coefficients C such that they are similar to the desired
core hole state. This was accomplished by first performing a ground state calculation, and
then use the obtained ground state result for the coefficient vectors C with rearranged
electronic occupations as initial guess for the core ionized state calculation. In general,
the convergence to the desired state is not guaranteed, but for vacancy states in orbitals
with isolated orbital eigenvalues εi, which were mostly addressed in this work, the desired
vacancy state is usually obtained by the described procedure. The Hartree-Fock method
therefore provides a computationally cheap tool for obtaining reliable estimates for core
ionized states [61].

2.1.3 Configuration interaction

In the previous subsection, the solution to the electronic wave function was found as a
single Slater determinant by introducing a mean field. Usually, the energy eigenvalues
obtained by the Hartee-Fock approximation are relatively accurate, however relevant

12
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properties of the electronic wave function are badly described. This failure of the Hartree-
Fock approximation is related to the fact that the electronic state is not well described
by a single Slater determinant but requires rather a linear combination of different Slater
determinants. This is expressed by the observation that the motion of a single electron
is not independent from the other electrons but is correlated to them. These correlations
are addressed by the configuration interaction (CI) method [47, 87] and thus yields a
more accurate description of electronic states. This method also provides a way to
obtain excited electronic states more reliably than using the Hartree-Fock method as the
electronic states are deduced from a linear equation, whereas in the Hartree-Fock method
electronic states are deduced from a non-linear equation instead. The concept of the CI
method is to use a general many particle description of the wave function, which is briefly
summarized in this subsection.

A general many particle basis of N electrons is constructed by a set of Slater determi-
nants

|φj1,σ1 . . . φjN ,σN 〉 := c†jN ,σN . . . c
†
j1,σ1
|vac〉. (2.20)

Here, |vac〉 is the vacuum state and c†j,σ is the fermionic creation operator for an electron
with the wave function φj(r) with spin σ. Using a set of K orthonormal one-electron
basis functions φj(r) an expansion of a general N -electron wave function is written as

|ψ〉 =
∑

{(j1,σ1,...,jN ,σN )}

Cj1,σ1,...,jN ,σN |φj1,σ1 . . . φjN ,σN 〉, (2.21)

where the sum is taken over all
(
N
2K

)
ordered N -tuples distributing the N electrons

over the set of K one-electron basis functions with spin quantum number σ = ±1/2.
Expanding the Hamiltonian in this basis, the coefficients Cj1,σ1,...,jN ,σN and the energy
eigenvalue for a certain Hamiltonian-eigenstate are obtained by solving the respective(
N
2K

)
dimensional eigenvalue problem. Note that this procedure (also known as the Full

CI expansion) is exact, provided that the set of one-electron basis functions φj(r) is
complete.

For the calculations performed here, the set of one-electron basis functions was taken
from the set of molecular orbitals previously obtained in an Hartree-Fock calculation.

13
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The involved Hamiltonian matrix elements

〈φj′1,σ1 . . . φj′N ,σN |Hel|φj1,σ1 . . . φjN ,σN 〉
=
∑
i,j

〈i|h|j〉〈φj′1,σ1 . . . φj′N ,σN |c
†
icj |φj1,σ1 . . . φjN ,σN 〉+

1

2

∑
i,j,k,l

〈ij| 1

r12
|lk〉〈φj′1,σ1 . . . φj′N ,σN |c

†
ic
†
jckcl|φj1,σ1 . . . φjN ,σN 〉, (2.22)

were then calculated by using the respective one or two-particle interaction matrix ele-
ments 〈i|h|j〉 and 〈ij|1/r12|lk〉 provided by the psi3 quantum package [24] with which
the Hartree-Fock calculation was performed. The matrix elements for the creation and
annihilation operators were evaluated using the so called Slater-Condon rules (see for
example Ref. [87]). The Hamiltonian eigenstate was then found by using common linear
algebra libraries [3, 65].

The sum in Eq. 2.21 can be dramatically reduced by contracting the Slater determi-
nants to eigenfunctions of the total spin operators S2 and Sz with given spin quantum
numbers S and MS [73]. These spin eigenstates form a new basis set, known as configu-
ration state functions (CSFs). Similarly, if the molecule is symmetric, the configuration
state functions can be contracted to satisfy a given spatial symmetry. By requiring the
desired electronic state to fulfill this symmetry and spin properties, the dimension of the
eigenvalue problem is strongly reduced.

However, exploiting spin and spatial symmetry does usually not suffice to reduce the
number of multi-electron basis functions to a computationally feasible number. Thus,
truncation schemes are used to have only the most relevant configuration state functions
for a certain spin and spatial symmetry included in the expansion. For the calculations
performed here, this was achieved by reducing the sum in Eq. 2.21 to CSFs close to a
reference occupation or a set of reference occupations. Starting with a specific reference
occupation (usually built from the MOs occupied as expected in the desired state), a set
of configuration state functions was created by performing a given number of excitations,
i.e. promotions of electrons from occupied MOs into unoccupied MOs. The procedure is
illustrated in Fig. 2.1. The truncation schemes are in the following denoted as “CI0” for
the CSFs drawn from the bare occupation reference, “CIS” for CI truncated to single exci-
tations from the given reference, “CISD” for CI truncated to single and double excitations
from the given reference, and so on. Also truncation schemes were used, where excitations
from multiple references are taken into account. These truncation schemes are denoted in
the following as “MRCIS”, “MRCISD”, etc. By increasing the number of excitations, the
truncation error in the calculation can be systematically decreased and in this way the
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quality of the electronic structure calculation was assessed.
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Figure 2.1: Illustration of truncation for CI expansion in terms of excitation levels. The
blue box illustrates the reference state: four electrons occupying the lowest
spin-orbitals. The green box illustrates all single excitations from the refer-
ence, where one electron has been promoted to orbitals which are unoccupied
in the reference. The red box illustrates double excitations, where two elec-
trons have been promoted to orbitals which are unoccupied in the reference.

2.2 X-ray matter interaction

In this section the electromagnetic field and its interaction with electronic states is dis-
cussed. To introduce the notation, I first give the quantized description of the elec-
tromagnetic field. Then, the interactions of a molecule with an X-ray field will be
discussed. This is done by going through the relevant approximation steps deriving
the Pauli master equation and discussing the conditions under which they are valid.
Finally, I will deduce transition rates for the most relevant X-ray matter interaction
processes.

2.2.1 The electromagnetic field

Like the multi-electron problem, the electromagnetic field is a multi-particle state. How-
ever, in contrast to the electronic case, it consists of non-interacting particles with bosonic
exchange symmetry. The electric fieldE(r, t) and magnetic fieldB(r, t) in vacuummay be
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defined by the vector potentialA(r, t) via the relations [44, 81]

B(r, t) := ∇×A(r, t), E(r, t) := −α ∂
∂t

A(r, t), (2.23)

where α ' 1/137 is the fine structure constant. In the following the Coulomb gauge is
used, requiring without loss of generality

∇A(r, t) = 0. (2.24)

In vacuum, the potential A then obeys the wave equation

∆A(r, t)− α2 ∂
2

∂t2
A(r, t) = 0. (2.25)

The general solutions for the vector potential in a volume V , decomposed into the plane
wave solution of Eq. 2.25 in quantized form is given by the operator1

A(r) =
∑
k,λ

√
2π

V |k|α
(
akλsλe

ikr + a†kλsλe
−ikr

)
=:
∑
λ

Aλ(r) sλ

=:
∑
k,λ

A−kλ(r)sλ +A+
kλ(r)sλ. (2.26)

In Eq. 2.26 the sum over λ covers the two polarization directions, described by the unit
vectors sλ, which are perpendicular to the wave vector k. The operators a†kλ and akλ are
bosonic creation and annihilation operators, respectively, which create a plane wave mode
(photon) with wave vector k and polarization λ. In this representation, the Hamiltonian
of the electromagnetic field simplifies to

HEM =
∑
k,λ

ωka
†
kλakλ, (2.27)

where ωk := |k|/α and the zero-point energy has been shifted [34].

1Note that the vector field A(r) is in the following an operator in the Schrödinger picture and thus is
not time-dependent; the time-evolution is shifted to the states of the electromagnetic field.
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2.2.2 Molecule-field interaction

In the following, I discuss the relevant interaction amplitudes for a molecule exposed to
an X-ray field, which will be later used to derive expressions for cross sections and decay
rates.

The dynamics of a free electron in an external electromagnetic field is described using
its canonical momentum

p + αA(r) (2.28)

by the Hamiltonian

h =
1

2
(p + αA(r))2 . (2.29)

Thus, the total Hamiltonian of a system consisting of a molecule and the electromagnetic
field is given by

H = Hnuc +Hel +HI +HEM, (2.30)

where Hnucl denotes the nuclear part, Hel the electronic part without electromagnetic
field, HEM the electromagnetic field part, and HI the coupling of the molecular electrons
to the electromagnetic field which is given by the term

HI =
∑
j,j′

〈φj |αA(r)p +
1

2
α2A2(r)|φj′〉c†jcj′ . (2.31)

As specified in subsection 2.1.2, the operators c†j and cj create and annihilate an electron
in spin orbital j, respectively. Note, that any direct interaction of the nuclei with the
electromagnetic field was neglected here. The nuclei mass is too large to respond to the
fast oscillating X-ray field and thus, the nuclear motion is barely affected directly by the
radiation.

Inserting the quantized electromagnetic field A(r) from Eq. 2.26 into the interaction
matrix element HI (Eq. 2.31) one can see, that in first order the last term in Eq. 2.31,
A2(r), is responsible for scattering due to the possible pairing of annihilation and cre-
ation operators (a†kak′), which preserves the number of photons. Similarly, the first
term, αA(r)p, describes absorption and emission, because it has terms that are pro-
portional to a single creation or annihilation operator (a†k or ak′) and thus changes the
number of photons by one. In the following analysis, I discuss these two terms sepa-
rately.
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Absorption and emission amplitude

The matrix elements of eigenstates of the electronic HamiltonianHel satisfy

Hel|ψi〉 = Ei|ψi〉. (2.32)

In terms of these electronic eigenstates, the matrix elements of the interaction Hamilto-
nian (Eq. 2.31), αA(r)p, read

α〈ψi′ |A(r)p|ψi〉 ' αA(r0)
∑
jj′

〈ψi′ |c†j′cj |ψi〉 〈φj′ |p|φj〉 (2.33)

= iαωi′i
∑
jj′

〈ψi′ |c†j′cj |ψi〉
∑
λ

Aλ(r0)〈φj′ |rλ|φj〉, (2.34)

where ωi′i := Ei′ − Ei, and |φj〉 denotes the single particle electron basis. Here, it was
assumed that the wavelength of the electromagnetic wave is much larger than the extent
of the molecular wave function such that

eikr ' eikr0 , (2.35)

with r0 giving now the position of the total molecule, i.e. the center of mass of the
molecule. For visible light with wavelengths of several hundred nanometers, this is usually
a good approximation. For X-rays with wavelengths of ' 1a0, this is not in general
applicable, as the wave functions for atoms or molecules are typically of similar size.
In this case, the variation of the wave phase factor in Eq. 2.35 needs to be taken into
account.

However, for the lower Z elements which are addressed here, the dominant contribution
for the X-ray matter interaction arises from core ionization (ionization of the 1s orbitals).
These orbitals are indeed much smaller than the X-ray wavelength of about 1a0. For the
interaction amplitude involving K-shell ionization, the spatial variation of A(r) may
become relevant as soon as the wavelength of light approaches the size of the K-shell '
1/Z. For carbon this would require a photon energy of more than 100 keV, which is much
higher than the photon energies addressed here. In contrast, the spatial variation of A(r)

is relevant also for lower photon energies, when considering the interaction amplitudes
involving valence shells. As these amplitudes are much smaller than the interaction
amplitude with the K shells and here the general evolution of the electronic state is
considered, the spatial variation of A(r) can practically be neglected. Thus, in this
work, the so called dipole approximation (Eq. 2.35) can safely be used to estimate the
molecular ionization amplitudes.
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Scattering amplitude

To discuss the remaining A2 part of the interaction Hamiltonian (Eq. 2.31), matrix
elements in terms of states of the electromagnetic field and of the electronic structure
are now considered. Specifically, the matrix elements

α2

2
〈ψi′ |〈(N − 1)[kin,λin]; 1[kout,λout]|A2(r)|N[kin,λin]〉|ψi〉 (2.36)

are examined. Here, |ψi〉 and |ψi′〉 are again eigenstates ofHel, |N[kin,λin]〉 and

|(N − 1)[kin,λin]; 1[kout,λout]〉 :=
1√
N
a†kout,λout

akin,λin |N[kin,λin]〉 (2.37)

is an eigenstates ofHEM, where |N[kin,λin]〉 hasN bosons in the mode kin, λin.

This choice is motivated by the fact that these matrix elements give the amplitude
for scattering, as here the total number of occupied modes in the radiation field is not
affected while one radiation field excitation is transferred from mode kinλin to koutλout.
The matrix elements between these states are

α2

2
〈ψi′ |〈(N − 1)[kin,λin]; 1[kout,λout]|A2(r)|N[kin,λin]〉|ψi〉 (2.38)

=
2πδλin,λout
V
√
ωkin

ωkout

√
N〈ψi′ |ei(kin−kout)r|ψi〉 (2.39)

=
2πδλin,λout
V
√
ωkin

ωkout

√
N

∫
drei(kin−kout)rρtrans

el,i′i (r), (2.40)

where ρtrans
el,i′i is the transition electron density for the states |ψi〉 and |ψi′〉,

ρtrans
el,i′i :=

∑
αβ

〈ψi′ |c†βcα|ψi〉φ∗β(r)φα(r). (2.41)

For i = i′, the transition electron density ρtrans
el,i′i is equivalent to the electron density

of state i. In this case, the scattering is proportional to the Fourier transform of the
electron density at the scattering wave vector kin − kout. This case represents elastic
scattering, where the electronic state is not changed. In contrast, the case i 6= i′ repre-
sents inelastic scattering (Compton scattering), where energy is transferred between the
radiation field and the molecule. As can be seen, the scattering amplitude is propor-
tional to the square root of the number of boson excitations (photons) N in the mode
kin,λin. Thus, the probability of the scattering processes described by the A2 term is
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proportional to the number of boson excitations, i.e., to the intensity of the incident
light.

In summary, I reviewed here the basic concepts of X-ray physics. To clarify the notation
and be self-contained, I have discussed the interaction amplitudes for X-ray scattering,
photo emission and photo absorption.

2.2.3 Derivation of the Pauli master equation

In the previous subsection, I discussed the relevant amplitudes for X-ray matter interac-
tion. These amplitudes already give first insight into the elementary interaction processes.
However, a full description of the dynamics of molecular states and the many more elec-
tromagnetic field states is too involved. As a simplification, I consider the dynamics of
the molecule in the framework of the Pauli master equation.

In this framework, the molecule is described by time-dependent populations ni(t), i.e.
probabilities for a molecular state i to be occupied at a time t. The dynamics of these
populations is specified via transition rates from one state to another. This way, for
example, the double ionization of a molecule, consists of two independent sequential ion-
ization processes. Although this approach seems to be a quite intuitive description of
the problem, the application of the Pauli master equation is only valid under specific
conditions. To show on what assumptions these conditions rely, I discuss in the follow-
ing the derivation of the Pauli master equation starting from fundamental equations.
This presentation closely follows Ref. [20], which is adopted here for the ionization and
Auger interaction processes of a molecule. The radiation field and the electronic contin-
uum are here treated as reservoir driving the decoherence of the electronic states of the
molecule.

The derivation is split into two parts: first, the derivation of the Bloch-Redfield equa-
tion and second, the so called secular approximation. I will summarize the relevant
assumptions and discuss their applicability to the problem of a molecule exposed to
XFEL radiation. Based on the derived expressions for the Redfield tensor elements, I
will finally give expressions for the transition rate for the elementary interaction pro-
cesses.
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Bloch-Redfield equation

Similar to the discussion in subsection 2.2.1, the evolution of a system consisting of a
molecule and a reservoir is described by the Hamiltonian

H = HM +HI +HR, (2.42)

where HM is the Hamiltonian of the molecule (nuclear and electronic part), HR the
Hamiltonian of the reservoir, later specified as radiation field or electronic continuum,
and HI is the reservoir-molecule interaction part, which can be written as a product
of operators acting on molecule or reservoir states, e.g., as a combination of respec-
tive field operators A for molecular states and field operators R for reservoir states,

HI = A ·R, (2.43)

which will be specified later.

The Hilbert space of the entire system is spanned by the product states of molecule
and reservoir states. The effective time evolution of the molecule is given by tracing out
the reservoir states in the total density matrix ρ(t). Thus, the reduced density matrices
of the molecule and the reservoir are given by

ρM(t) := TrRρ(t), (2.44)

ρR(t) := TrMρ(t). (2.45)

It is assumed that the interaction HI is weak and the reservoir is much larger than
the molecule, such that the reservoir can be approximated by a steady state, ρR(t) '
ρR(0). Specifically, it is assumed that the density matrix ρR(0) is pure, i.e., it rep-
resents a statistical mixture of reservoir eigenstates. Under this assumption it fol-
lows that the expectation value of a reservoir field operator at any time is zero, i.e.

〈R(t)〉R := TrRρR(0)R(t) = 0. (2.46)

Within the interaction picture, the evolution of the density operator ρ of the sys-
tem driven by the coupling term HI is determined by Heisenberg’s equation of motion

d

dt
ρ(t) = −i [HI(t), ρ(t)] . (2.47)

The perturbative expansion of the time-evolution of the density matrix for a finite time
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step ∆t is given by the Dyson series

∆ρ(t+ ∆t) := ρ(t+ ∆t)− ρ(t) = −i
∫ t+∆t

t
dt′
[
HI(t

′), ρ(t)
]

−
∫ t+∆t

t
dt′
∫ t′

t
dt′′
[
HI(t

′),
[
HI(t

′′), ρ(t)
]]

+ . . . . (2.48)

Tracing out the reservoir states, this series yields

∆ρM(t) = −i
∫ t+∆t

t
dt′TrR

[
HI(t

′), ρ(t)
]

−
∫ t+∆t

t
dt′
∫ t′

t
dt′′TrR

[
HI(t

′),
[
HI(t

′′), ρ(t)
]]

+ . . . . (2.49)

Evaluating the traces of the commutators under the time integrals, it can be shown [20]
that each term in this series includes expectation values of products of field operators
R(t). Thus, the first term in Eq. 2.49 vanishes (Eq. 2.46). The second term in Eq. 2.49
is proportional to

〈R(t′)R(t′′)〉 := TrRρR(0)R(t′)R(t′′) =: g(t′ − t′′), (2.50)

which is the auto-correlation function of the reservoir field R. Because it was assumed
that the reservoir is statistically stationary, the auto-correlation can only depend on the
time difference t′− t′′ as anticipated by the definition of g(t− t′) [20]. Note that the next
non-vanishing term is proportional to

〈R(t′)R(t′′)R(t′′′)R(t′′′′)〉, (2.51)

and thus depends on the four-time-correlation of the reservoir.

In the following, I assume that only the two-time correlation function as the first non-
vanishing term contributes to the dynamics and that all higher correlations are negligible
and therefore the Dyson series (Eq. 2.49) can be truncated at second order in HI. A
further and fundamental assumption is, that this reservoir correlation function decays
rapidly with time τ = t′− t′′ and vanishes for times larger than a certain correlation time
τc that is significantly smaller than the finite time step ∆t in which the perturbative
expansion is valid.
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After having changed the integration variables (t′′ = t′−τ), equation 2.49 reads

∆ρM(t+ ∆t)/∆t ' −1/(∆t)

∫ t+∆t

t
dt′
∫ ∞

0
dτ TrR

[
HI(t

′),
[
HI(t

′ − τ), ρ(t)
]]
, (2.52)

where the integration limit of τ has been extended to infinity exploiting the fact that
〈R(0)R(τ)〉 vanishes within τ � ∆t. Note that in contrast to Eq. 2.49, the time evo-
lution of the density operator in Eq. 2.52 is now Markovian (keeping in mind that
the integrand vanishes for τ > ∆t), that means its evolution at time t + ∆t only
depends on operator values evaluated at times t′ within the finite time-step interval
[t, t+ ∆t]

Expanding the commutator in Eq. 2.52 and performing the time integration over
t′ in the basis of molecular eigenstates yields the Bloch-Redfield equations [20, 77,
96]

∆ρM(t)ij
∆t

=
∑
n,m

ei(ωij−ωmn)t f((ωij − ωmn)∆t)Kijmn ρM (t)mn, (2.53)

where the Redfield tensor is defined as

Kijmn := −
∫ ∞

0
dτ

〈R(0)R(τ)〉
(
δjn
∑
r

AirArme
iωmrτ −AimAnjeiωmiτ

)

+〈R(0)R(−τ)〉
(
δim

∑
r

AmrArje
iωrnτ −AimAnjeiωjnτ

)
(2.54)

and the abbreviations

f(x) := eix/2
sin(x/2)

x/2
and ωij := (Ei − Ej), (2.55)

were used.

The Bloch-Redfield equations provide a full description of the molecule dynamics,
without depending explicitly on the state of the reservoir. For practical applications,
they are only applicable when a very limited subset of molecular states is involved in the
dynamics.
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Secular approximation

To gain a description of the molecule dynamics according to the Pauli master equation,
the Bloch-Redfield equation derived in the previous subsection are here simplified by
introducing the secular approximation.

In the secular approximation, all terms in Eq. 2.53 with ωij − ωmn 6= 0 are neglected.
This may be justified as f((ωij − ωmn)∆t) ' 0 for (ωij − ωmn) � 1/∆t, i.e., when
the spacing between the energy levels is much larger than the inverse scale of the time
evolution. Whether this assumption is valid for a molecule exposed to XFEL radiation
will be discussed below.

The time evolution for the different density matrix elements in the secular approxima-
tion in the Schrödinger picture is given by

d

dt
ρM(t)ii =

∑
n

Kiinn ρM (t)nn, (2.56)

d

dt
ρM(t)ij = −iωij ρM (t)ij +Kijij ρM (t)ij , (2.57)

where now the difference quotient ∆ρM(t+ ∆t)/∆t has been approximated by the time
derivative dρM(t)

dt . Equations 2.56 and 2.57 are now uncoupled equations for the diagonal
and non-diagonal elements of the density matrix. Equation 2.56 is the desired Pauli
master equation, which describes the evolution of molecular state populations. These
populations are given by the diagonal density matrix elements ρii. The Redfield tensor
elements Kijmn which are involved in Eq. 2.56 and 2.57 are

K iinn
i 6=n

= 2|Ani|2 Re

∫ ∞
0

dτ〈R(0)R(τ)〉eiωniτ , (2.58)

Kiiii = −2
∑
r 6=i
|Air|2 Re

∫ ∞
0

dτ〈R(0)R(τ)〉eiωirτ , (2.59)

K ijij
i 6=j

= −
∫ ∞

0
dτ

[
〈R(0)R(τ)〉

(∑
r

|Air|2eiωirτ −AiiAjj
)

+〈R(0)R(−τ)〉
(∑

r

|Ajr|2e−iωjrτ −AiiAjj
)]

. (2.60)

Writing the correlation function in spectral representation, the time integral in Eq. 2.58
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and Eq. 2.59 can now be carried out as

Re

∫ ∞
0

dτ〈R(0)R(τ)〉eiωniτ = Re

∫ ∞
0

dτ
∑
ab

ρR,aaRabRbae
−iωabτeiωniτ

= 2π
∑
ab

ρR,aa|Rab|2δ(Ea − Eb + En − Ei). (2.61)

Here, ρR,aa is the spectral probability to find the reservoir state a with energy Ea. As
can be seen, the τ integration yields energy-conserving delta functions for the energy
transfers between the reservoir and the molecule.

The interpretation of the Redfield tensors is now clear: Elements Kiinn describe tran-
sitions in which the molecule is transferred from state n to state i, while the reservoir
changes from state a to state b by preserving the overall energy, i.e. Ea +En = Eb +Ei.
Similarly, Kiiii characterizes all decaying transitions going from molecular state i to any
other state under influence of the reservoir.

The non-diagonal elements of the molecular density matrix ρM(t)ij represent the co-
herence properties between state i and j. In the secular approximation, they couple only
to themselves via the complex tensor element Rijij . The imaginary part of the tensor
element Rijij causes ρM(t)ij to oscillate with a shifted frequency ωij + ImKijij . The real
part of Kijij results in a decay describing the loss of coherence due to the interaction of
the molecule with the bath. Having carried out the τ integration in Eq. 2.61 the rate of
coherence loss is thus given by

ReK ijij
i6=j

=
1

2
(Kiiii +Kjjjj) (2.62)

−2π
∑
ab

ρR,aa|Rab|2δ(Ea − Eb)
(
|Aii|2 + |Ajj |2 − 2 ReAiiAjj

)
.

Both terms are strictly negative (see Eq. 2.59), illustrating that in the secular approxi-
mation, the interaction with the reservoir inevitably introduces a loss of coherence of the
molecular states specified by the steady oscillatory decay of the non-diagonal components
of the density matrix ρM(t)ij . Given that the above assumptions hold, the evolution of
the molecular density matrix can be considered completely decoherently over longer time
scales. Thus, the dynamics of the molecule is solely given by the Pauli master equation
(Eq. 2.56) and ρM(t)ij = 0 (instead of Eq. 2.57).
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Validity of approximation

In summary, the validity of the Pauli master equation is based on the following assump-
tions:

• The reservoir is always in a stationary state, which is a statistical mixture of eigen-
states. This is particularly the case, when the reservoir is in thermodynamic equilib-
rium. The reservoir, which is considered here to be the X-ray field or the electronic
continuum, has a large number of possible excitation modes compared to those of
the molecule. The perturbation introduced by the molecule on the reservoir can
be considered negligible. Therefore it is justified, to assume the reservoir field to
be stationary within the timescale of τdyn in which the dynamics of the molecule
occurs.

• The Dyson series is truncated at the first non-vanishing order. This is valid, when
the typical magnitude of the interaction strength is small compared with the typical
electron binding energies in the molecule. Considering as reservoir an incident X-ray
beam of frequency ω, the typical interaction strength is given by the ponderomotive
energy defined by

Ep := J/(4ω2), (2.63)

where J is the intensity of the electromagnetic field. The extreme intensities J pro-
vided by XFEL can be treated perturbatively because the ponderomotive energy
Ep is usually still small compared to electron binding energies of a few eV. Note
that the second non-vanishing term (fourth order in HI) of the Dyson series would
include instantaneous two-photon absorption processes [42], which have little rele-
vance for XFEL conditions [79]. Similarly, those terms of fourth order in HI which
describe the molecule-continuum interaction would account for instantaneous dou-
ble Auger processes, i.e., the reoccupation of an electron hole via instantaneous
emittance of two electrons. Considering additional mixed terms of the radiation
field and the electronic continuum interaction of fourth order in HI , these terms
would give rise to a one-step approach of the Auger effect [43]. By excluding these
terms, the photo-ionization and the subsequent Auger decay is seen here to be
composed of two distinct steps.

The consequence of truncating the Dyson series at the first non-vanishing order
can also be interpreted in the following way: The interaction with the much larger
reservoir behaves effectively like a measurement of the molecular quantum states.
Thus, via the interaction with the reservoirs, the electronic wave function is steadily
subject to measurements, such that the wave function repeatedly collapses to a
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measured electronic state with the probability given by the diagonal elements of
the density matrix.

• The correlation time of the radiation field τc must be smaller than the timescale
τdyn with which the dynamics of density matrix elements occur. This condition
is usually fulfilled, when considering the XFEL beam as reservoir, which has a
coherence time of few 100 attoseconds [40], whereas the typical time scale of the
dynamics is several femtoseconds. Note, that by using this strict approximation,
the τ integration in Eq. 2.61 leads to energy conserving delta functions. However,
in more detail, with finite correlation time and taking care of the τ dependence of
the density matrix ρ, these energy conserving delta functions must be replaced by
kernels which are broadened by the spectral width of the reservoir and the dynamics
of the density matrix evolution.

• The discrete energy levels of the molecule are well separated, such that reciprocal
energy differences 1/ωij are much smaller than the dynamical timescale, 1/ωij �
τdyn. When considering the different vibrational energy niveaus of the molecule,
this is definitely not the case and the secular approximation becomes invalid, as
the vibrational energies can lie in a molecule quite close. For the here considered
XFEL-molecule interaction also dissociative molecular states are involved in which
the vibrational mode levels even get continuous. However, when considering only
the electronic states, the energies are usually separated by several eV corresponding
to several attoseconds which is shorter than τdyn.

The non-applicability of the secular approximation regarding vibrational states im-
plies the relevance of interferences between the different vibrational levels of an elec-
tronic state (vibrational interference effects). The investigation of these vibrational
levels is a formidable task, which allows deep insight in the molecular structure.
However, I only focused here on the evolution of electronic state populations. I,
thus, did not consider the different vibrational levels but combined them to the
respective electronic state. In the electron emission spectra, the vibrational states
modulate the spectra with small detailed features. By neglecting these vibrational
states and their interference, I lost this information and got a more coarse-grained
picture of the spectrum. In this thesis, I approximated the broadening of spectral
lines due to several close-lying vibrational levels by convolution with a broaden-
ing kernel of certain width. The width of the broadening was either estimated
from comparison with measured spectra or was obtained from molecular dynamics
simulation as specified in detail in section 3.2.
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To perform this combination of vibrational levels to one electronic level, I assumed
that the involved transition amplitudes are independent of the respective vibra-
tional levels and thus do not depend on the nuclear coordinates R within the
support of the vibrational states.

In the Pauli master equation two types of Redfield tensor elements Kijkl remain. In
the following, I specify the field operators A and R and discuss the resulting expressions
for the two Redfield tensor elements K iinn

i 6=n
and Kiiii.

Photo-ionization and fluorescence

core

valence

continuum

Figure 2.2: Left: Sketch of a core ionization process. The electron in the core level is
transferred to an unbound level in the continuous energy spectrum. Right:
Sketch of a fluorescence process. An electron from a higher energy level
reoccupies the core hole while emitting a photon.

As discussed in subsection 2.2.2 about the molecule-field interaction, I now consider
the interaction Hamiltonian part relevant for photon absorption / emission from Eq. 2.31,
i.e.

HI = αA(r)p, (2.64)

to derive ionization cross sections and fluorescence decay rates. The photo-ionization
and fluorescence processes are sketched in Fig. 2.2.

The radiation field and the unbound electron states are treated here as a reservoir.
To achieve this, the electron momentum operator p is projected onto its unbound and
bound parts by introducing the projectors Q and P = 1−Q. With these projectors the
interaction Hamiltonian reads

HI = αA(r) (PpP +QpP + PpQ+QpQ) , (2.65)
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where in the following the part QpQ terms (unbound-unbound coupling) is neglected.
The remaining continuum-bound and bound-bound coupling terms are

QpP =
∑
ακ

pκαc
†
κcα, (2.66)

PpQ =
∑
ακ

pακc
†
αcκ, (2.67)

and PpP =
∑
αβ

pαβc
†
αcβ, (2.68)

where cα and cβ (c†α and c†β) are annihilation (creation) operators for bound electrons and
cκ (c†κ) is an annihilation (creation) operator for an unbound continuum electron. The
quantities pακ denote the one particle momentum matrix elements between the respective
one-electron spin wave functions φα and φκ. The two Redfield tensor elements relevant
in the secular approximation (Eq. 2.58 and Eq. 2.59 ) yield

K iinn
i6=n

=
∑
κ

∣∣∣∣∣∣
∑
β

pλqκβ〈ψi|cβ|ψn〉

∣∣∣∣∣∣
2

4π2α

ωq
Jqλqδ(Ei − En − ωq + εκ)

+
∑
k,λ

k 6=q,λ 6=λq

∣∣∣∣∣∣
∑
αβ

pλαβ〈ψi|c†αcβ|ψn〉

∣∣∣∣∣∣
2

4π2

ωkV
δ(Ei − En + ωk) (2.69)

K iiii
i 6=n

= −
∑
r 6=i

Krrii. (2.70)

Here, εκ is the energy of the unbound continuum electrons and it was assumed that the
unbound electronic reservoir is empty at all times, i.e., when 〈·〉cont means expectation
value over the reservoir of the continuum electrons, 〈c†κcκ〉cont = 0. Further, it was
assumed that the radiation reservoir is a linearly polarized X-ray flux with photon energy
ωq (larger than the ionization potential of all bound electrons), polarization λq, and
intensity Jqλq := 〈a†qλqaqλq〉rad/(αV ), where 〈·〉rad means expectation value over the
reservoir of the radiation field. As can be seen, two major terms in Eq. 2.69 appear, the
first one is dependent on the intensity at mode q and describes an ionization process,
the second one describes an electronic bound-bound transition, specifically a fluorescence
process.
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Employing the dipole approximation (Eq. 2.34) the Redfield tensor elements read

K iinn
i 6=n

= σn→i(ωq)Jqλq + Γfluor.
n→i , (2.71)

Kiiii = −
∑
r 6=i

σi→r(ωq)Jqλq − Γfluor.
i→r , (2.72)

with the absorption cross section

σi→j(ω) := 4π2αω
∑
κ

∣∣∣∣∣∣
∑
β

rλκβ〈ψj |cβ|ψi〉

∣∣∣∣∣∣
2

δ(Ei − Ej − ω + εκ), (2.73)

and the fluorescence decay rates

Γfluor.
n→i :=

∑
λ

∣∣∣∣∣∣
∑
αβ

rλαβ〈ψi|c†αcβ|ψn〉

∣∣∣∣∣∣
2 ∑

k
k,λ6=q,λq

4π2ωk
V

δ(Ei − En + ωk)

=
∑
λ

∣∣∣∣∣∣
∑
αβ

rλαβ〈ψi|c†αcβ|ψn〉

∣∣∣∣∣∣
2

α2(Ei − En)3

2π
, (2.74)

where in the last step the summation over the radiation modes was executed in the
thermodynamic limit (

∑
k →

∫
d3k V

(2π)3
).

Auger decay

core

valence

continuum

Figure 2.3: Sketch of Auger decay process. An electron at higher energy level reoccupies
the core hole while another electron is emitted.

Similar to the previous consideration regarding photo-absorption and fluorescence pro-
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cesses, the effect of the electronic continuum mediated by the bare continuum-bound
interaction is now included in the Redfield tensors. The resulting Auger transitions are
sketched in Fig. 2.3.

Again, the total Hamiltonian is projected onto bound and continuum states

H = Hbound +Hcont +HI = QHQ+ PHP +QHP + PHQ. (2.75)

Here, Q is the projector onto the Hilbert subspace with one electron in the continuum
and multiple electrons in the bound states and P is the projector into the multi-electron
Fock space containing only the bound electrons. Note, that the two projectors Q and
P are not exactly complementary, because multi-continuum-electron contributions have
been neglected here. With the electronic Hamiltonian as specified in Eq. 2.7, the different
terms are

Hbound =
∑
αβ

〈α|h|β〉c†αcβ +
1

2

∑
αβγδ

〈αβ|1
r
|γδ〉c†αc†βcδcγ (2.76)

Hcont =
∑
κλ

〈κ|h|λ〉c†κcλ

+
∑
κλαβ

(
〈κα|1

r
|λβ〉 − 〈κα|1

r
|βλ〉

)
c†κc
†
αcλcβ, (2.77)

HI =
∑
ακ

〈α|h|κ〉(c†αcκ + c†κcα),

+
∑
αβγκ

(
〈αβ|1

r
|κγ〉 − 〈αβ|1

r
|γκ〉

)
(c†αc

†
βcγcκ + c†κc

†
γcβcα), (2.78)

where the sums over α, β, γ, δ are taken over the one-particle basis functions restricted to
the bound states and the sums over κ and λ are taken over unbound continuous energy-
normalized states and is to be understood as an integration. With this definition and con-
sidering the electronic continuum as an empty reservoir, the two Redfield tensor elements
relevant in the secular approximation (Eqs. 2.58 and 2.59 ) yield

K iinn
i 6=n

= ΓAuger
n→i and Kiiii = −

∑
r 6=i

ΓAuger
i→r , (2.79)
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with the Auger decay rate defined as

ΓAuger
i→j := 2π

∑
κ

δ(Ei − Ej + εκ)
∣∣∣∑
α

〈α|h|κ〉〈ψj |cα|ψi〉

+
∑
α,β,γ

(
〈αβ|1

r
|κγ〉 − 〈αβ|1

r
|γκ〉

)
〈ψj |c†γcβcα|ψi〉

∣∣∣2. (2.80)

Spin free form of the Pauli master equation

The expressions derived in this subsection involve summations over spins. This spin
summation can be carried out using the Wigner-Eckart Theorem [10]. For the relevant
spin states which are singlet, doublet and triplet spin states. This yields the following
relations

〈ψS=1/2
j,M=1/2|cα,↓|ψ

S=0
i,M=0〉 = −〈ψS=1/2

j,M=−1/2|cα,↑|ψ
S=0
i,M=0〉, (2.81)

〈ψS=1
j,M=0|cα,↑|ψS=1/2

i,M=1/2〉 =
1√
2
〈ψS=1

j,M=1|cα,↓|ψS=1/2
i,M=1/2〉, (2.82)

〈ψS=1/2
j,M=1/2|c

†
γ,↑cβ,↓cα,↑|ψS=0

i,M=0〉 = −〈ψS=1/2
j,M=−1/2|c

†
γ,↑cβ,↓cα,↓|ψS=0

i,M=0〉, (2.83)

〈ψS=1
j,M=0|c†γ,↑cβ,↓cα,↑|ψ

S=1/2
i,M=1/2〉 =

1√
2
〈ψS=1

j,M=1|c†γ,↑cβ,↓cα,↓|ψ
S=1/2
i,M=1/2〉, (2.84)

where the additionalM and S indices now denote spin quantum numbers and the arrows
denote the respective spin of the fermionic creation and annihilation operators. Using
the above relations, the Pauli master equation (Eq. 2.56) can be written in a spin less
form where now the density matrix elements are understood as averages over the different
elements of a spin multiplet.

Combining the Redfield tensors for photo-ionization, fluorescence, and Auger decay
yields the spin-free Pauli master equation

dρM(t)ii
dt

= −
∑
r 6=i

ρM(t)ii (Γi→r + σi→r(ωk)Jkλ)

+
∑
n6=i

ρM(t)nn (Γn→i + σn→i(ωk)Jkλ) , (2.85)

where the decay rates Γn→i (combined Auger and fluorescence decay rates) and ion-
ization cross sections σn→i(ωk) have been multiplied with the spin multiplicity of their
respective final states. Accordingly, the state indices i, r, n now denote respective spin
multiplets.
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Calculation of Auger emission spectra

In this thesis, I considered the spectra of emitted Auger electrons, particularly. Having
numerically integrated the electronic spin-multiplet population ρM(t)ii of the relevant
electronic states i (Eq. 2.85), Auger electron emission spectra f(ε) were obtained by the
relation

f(ε) =

∫ ∞
−∞

dtρM(t)ii

∫ ∞
0

dε d(ε− εn)
∑
i,n

ΓAuger
i→n . (2.86)

The function d(ε) is a broadening function, which was chosen to be a Gaussian to incorpo-
rate the effects of broadening due to nuclear motion and evolution of the density matrix
(lifetime broadening) as discussed in subsection 2.2.3.

In summary, under the assumptions discussed, the spin-free Pauli master euqation
(Eq. 2.85) now describes the dynamics of molecular electronic spin multiplets, which
were used in this work to track the evolution of a molecule exposed to XFEL radia-
tion. The Auger electron spectra were obtained from Eq. 2.86 which accumulates the
Auger emission in time weighted by the respective state population. In addition, it
parametrically incorporates the effects of lifetime broadening and nuclear motion via the
broadening function d(ε).
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2.3 Single center method

As discussed in the previous section, the evaluation of the dynamics of a molecule ex-
posed to the X-ray field requires calculation of matrix elements involving electronic con-
tinuum wave functions. These electronic continuum wave functions cannot be described
by localized basis functions, as commonly used in quantum chemistry. To address this
problem, the wave function was expanded on a radial grid using spherical harmonics
with asymptotic boundary conditions at large distances, a procedure known as single
center method [26, 27]. Conceptual, this procedure roots back to the beginning of molec-
ular ab-initio calculations [12] and has been used for various applications involving the
electronic continuum in molecular calculations[64, 86, 103]. In this section, I review the
details of the single center method and explain how the wave function of an electron
in the continuous energy spectrum in the vicinity of a molecule was numerically deter-
mined.

2.3.1 Expansion in spherical harmonics

As mentioned in subsection 2.2.3, it is assumed that there is only one unbound electron
at a certain time. I furthermore assume that the electronic structure of the bound
electrons can be determined independently of the continuum electron presence. Thus,
given the many particle state of the bound electrons |ψ〉, the stationary wave function of
the continuum electron φε(r) with energy ε is determined as solution of the stationary
Schrödinger equation

−1

2
∆φε(r) +

nuclei∑
n

−Zn
|r−Rn|

φε(r) +

orbitals∑
i,j

∫
d3r′ρij

φ∗i (r
′)φj(r

′)

|r− r′| φε(r)

−
orbitals∑
i,j

ρσεij

∫
d3r′

φ∗i (r
′)φε(r

′)

|r− r′| φj(r) = ε φε(r), . (2.87)

The first term on the left hand side of Eq. 2.87 is the kinetic energy term, the second term
describes the electrostatic attraction by the molecular nuclei at positionsRn with charges
Zn. The third term describes the electrostatic repulsion with the electrons occupying the
molecular orbitals φj(r). The last term on the left side of Eq. 2.87 is the corresponding
exchange interaction. The electrostatic and exchange terms depend on the matrix ρij ,
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which is the quantum chemical density matrix, defined as

ρij :=
∑

σ=±1/2

ρσij :=
∑

σ=±1/2

〈ψ|c†σ,icσ,j |ψ〉, (2.88)

where c†σ,i and cσ,i create and annihilate electrons in orbital i with spin σ, respec-
tively.

The single center expansion of the molecular orbitals and the electronic continuum
wave functions is given by

φε(r) =
∑
lm

Pε,lm(r)

r
Ylm(θ, φ), (2.89)

φi(r) =
∑
lm

Pi,lm(r)

r
Ylm(θ, φ), (2.90)

where Ylm(θ, φ) are spherical harmonics and Pi,lm(r) and Pε,lm(r) are the expansion
coefficients at radius r of the orbital i and the continuum wave function ε, respectively.
With these expansion (Eq. 2.89 and Eq. 2.90) and using the Laplace expansion for the
Coulomb interaction,

1

|r− r′| =
∑
lm

4π

2l + 1

rl<

rl+1
>

Y ∗lm(θ′, φ′)Ylm(θ, φ), (2.91)

with

r< :=

r′ for r′ < r

r for r′ ≥ r
r> :=

r′ for r′ > r

r for r′ ≤ r
, (2.92)

the stationary Schrödinger Eq. 2.87 for φε(r) yields a set of coupled differential equa-
tions for the coefficient functions Pε,lm(r). In particular, the different parts in Eq. 2.87
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read

−∆φε(r) = −1

r

∑
lm

(
d2

dr2
r − l(l + 1)

r2

)
Pε,lm(r)Ylm(θ, φ), (2.93)

1

|r−Rn|
φε(r) =

1

r

∑
lm, l1m1
l2m2

4π (l2m2, lm|l1m1)

2l2 + 1

rl2<

rl2+1
>

Yl2m2(θn, φn)

Pε,l1m1(r)Ylm(θ, φ), (2.94)∫
d3r′

φ∗j (r
′)φk(r

′)

|r− r′| φε(r) =
1

r

∑
lm, l1m1, l2m2
l3m3, l4m4

4π (lm|l1m1, l4m4)(l4m4, l3m3|l2m2)

2l4 + 1

∫ ∞
0

dr′
rl4<

rl4+1
>

P ∗j,l3m3
(r′)Pε,l2m2(r′)

Pε,l1m1(r)Ylm(θ, φ). (2.95)

The abbreviation (lm|l1m1, l2m2) denotes the Gaunt coefficients, which are integrals of
spherical harmonics Ylm(θ, φ) triples,

(lm|l1m1, l2m2) = (l1m1, l2m2|lm)∗ :=

∫
dΩY ∗lm(θ, φ)Yl1m1(θ, φ)Yl2m2(θ, φ), (2.96)

where the integration is to be performed over the entire 4π solid angle,∫
dΩ :=

∫ π

0
sin(θ)dθ

∫ 2π

0
dφ. (2.97)

With these identities (Eq. 2.93, Eq. 2.94, Eq. 2.95) the differential equation 2.87 is
rewritten as(−1

2

d2

dr2
+
l(l + 1)

2r2

)
Pε,lm(r) +

∑
l1m1

(
V ne
lm,l1m1

(r) + Jlm,l1m1(r)
)
Pε,l1m1(r)

+Xlm[Pε](r) = ε Pε,lm(r), (2.98)

or shorter

d2

dr2
Pε(r) = −M(r)Pε(r) + 2X[Pε](r), (2.99)

where the elements of the vector Pε(r) are the different coefficient functions Pε,lm(r).
The matrix M in Eq. 2.99 is defined as

Mlm,l1m1(r) := δl1,lδm1,m

(−l(l + 1)

r2
+ 2ε

)
− 2V ne

lm,l1m1
(r)− 2Jlm,l1m1(r), (2.100)
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with the abbreviations

V ne
lm,l1m1

(r) :=
nuclei∑
n

Zn
∑
l2m2

4π (l2m2, lm|l1m1)

2l2 + 1

rl2<

rl2+1
>

Yl2m2(θn, φn), (2.101)

Jlm,l1m1(r) :=
orbitals∑
i,j

ρi,j
∑

l2m2, l3m3,
l4m4

4π (lm|l1m1, l4m4)(l4m4, l3m3|l2m2)

2l4 + 1

yl4 [P ∗i,l3m3
Pj,l2m2 ](r), (2.102)

yl[f ](r) :=

∫ ∞
0

dr′
rl<

rl+1
>

f(r′). (2.103)

The term X[Pε] denotes the contributions of the non-local exchange interaction, which
is a linear functional of the solution vector Pε,

X[Pε]l,m(r) :=
orbitals∑
i,j

ρσεij
∑

l1m1, l2m2
l3m3, l4m4

4π (lm|l1m1, l4m4)(l4m4, l3m3|l2m2)

2l4 + 1

yl4 [P ∗i,l3m3
Pε,l2m2 ](r)Pj,l1m1(r). (2.104)

For computational purposes, it is convenient to introduce [27] the auxiliary linear
functional yl[f ](r) (Eq. 2.103), which is implicitly determined by the boundary value
problem

d2 (r · yl[f ](r))

dr2
=

l(l + 1)

r2
(r · yl[f ](r))− 2l + 1

r
f(r)

(r · yl[f ](r))
r→∞→ 1

rl

∫ ∞
0

dr′ (r′)l f(r′)dr′

(r · yl[f ](r))
r→0→ rl+1

∫ ∞
0

dr′
1

(r′)l+1
f(r′)dr′, (2.105)

resulting in a differential equation for r ·yl[f ](r) which is similar to that for the quantities
Pε,lm(r).

In summary, by using the single center expansion (Eq. 2.89 and Eq. 2.90), the orig-
inal three dimensional differential equation (Eq. 2.87) transforms into a set of cou-
pled linear differential equations (Eq. 2.99). However, solving Eq. 2.99 numerically
can be still quite costly depending on the number of angular quantum numbers l,m
which are taken account of. Therefore, I here briefly give some details on how I cal-
culated the quantities Vlm,l1m1(r) and Xlm(r) efficiently by avoiding duplicate calcula-
tions.
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To perform the single center expansion of the bound electron orbitals (Eq. 2.90), the
angular integral

Pi,lm(r) = r ·
∫
dΩφi(r)Y ∗lm(θ, φ) (2.106)

was calculated via Gauss-Legendre integration, where the bound electron orbitals were
taken from a prior Hartree-Fock calculation performed with the psi3 quantum pack-
age [24]. Subsequently, the auxiliary quantities yl[Pi,l1m1Pj,l2m2 ](r) (see Eq. 2.103) were
calculated by solving the differential equation (Eq. 2.105) for each required pair of or-
bital and angular quantum numbers. The numerical procedure for solving this differential
equation is similar to the one described later for solving the coupled differential equa-
tion 2.98 for Pε,lm(r). From the stored auxiliary quantities yl[Pi,l1m1Pj,l2m2 ](r), the quan-
tities Jlm,l1m1(r) andXlm(r) were assembled as defined in Eq. 2.102 and Eq. 2.104, respec-
tively. The quantum chemical density matrix elements ρij were taken from the CI calcu-
lation for the respective electronic bound state. To reduce the computational costs, real
valued spherical harmonics were used which are given by

Ylm(θ, φ) =


−i/
√

2
(
Y c
l−m(θ, φ)− (−1)mY c

lm(θ, φ)
)

m < 0

Y c
lm(θ, φ) m = 0

1/
√

2
(
Y c
lm(θ, φ) + (−1)mY c

l−m(θ, φ)
)

m > 0

, (2.107)

where Y c
lm(θ, φ) are the usual complex spherical harmonics. Also, precalculated values for

the Gaunt coefficients (lm|l1m1, l2m2) were used [75]. Notably, for many combinations of
lm quantum number tuples the computation could be avoided, as the respective Gaunt
coefficients (l1m2|l2m3, l3m3) are zero [49].

2.3.2 Asymptotics of the continuum electron wave function

The coupled differential equations 2.98 are of second order and therefore, for each angular
quantum number tuple (l,m), two boundary conditions need to be specified for a unique
solution. One of the boundary conditions results from the requirement, that the energy
eigenvalue 〈φε|h|φε〉 must be finite which requires that

Pε,lm(r → 0)→ 0 for all l,m. (2.108)
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Further boundary conditions result from the normalization condition

〈φε|φε′〉 =

∫ ∞
0

dr
∑
lm

P ∗lm,ε(r)Plm,ε′(r) = δ(ε− ε′). (2.109)

In this subsection, the asymptotic behavior of φε(r) is deduced by performing a perturba-
tive expansion of the solution, from which I show, how the above normalization condition
is achieved.

In the following, I will use the Dirac notation,

〈r, l,m|PLMε 〉 := PLMε,lm(r), (2.110)

for the coefficient function at radius r with the angular quantum numbers lm. The
additional superscript LM has been added to discern the different energy degenerate
solutions with different contributions in the lm tuples.

First, the differential equation (Eq. 2.99) for the coefficient function PLMε,lm(r) is split
into a Coulomb potential part h0 that is caused by a single point charge and a dis-
tortion part v containing the deviations of the actual molecule-continuum interaction
from h0. The value of the single point charge is chosen, such that the distortion part
v vanishes at a large radius r, i.e., the point charge is equal to the total charge of the
molecule.

The solution of the boundary value problem for the single point charge potential,

h0|P 0,LM
ε 〉 = ε|P 0,LM

ε 〉, (2.111)

with the boundary condition limr→0〈r, l,m|P 0,LM
ε 〉 = 0, and the normalization condition

〈P 0,LM
ε |P 0,L′M ′

ε′ 〉 = δ(ε − ε′)δLL′δMM ′ , is known from the Coulomb wave function [1] as

〈r, l,m|P 0,LM
ε′ 〉 = δL,lδM,mFl(r). (2.112)

Here, Fl(r) denotes the regular Coulomb wave function for the respective point charge.
The corresponding linearly independent solution is the irregular Coulomb wave functions
Gl(r), for which Gl(r → 0) 6= 0.2 Figure 2.4 shows the regular and irregular Coulomb
wave functions Fl(r) and Gl(r) for typical parameters .

2Note that in this work energy normalized Coulomb wave functions are used. Thus, Fl(r) :=√
2

πk(ε)
F̃l(k(ε)r), where k(ε) =

√
2ε and F̃l(ρ) is the usual definition of Coulomb wave function

as for example found in Ref. [1].
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Figure 2.4: Energy normalized regular and irregular Coulomb wave function FL(r) and
GL(r) for different angular momenta L for a central point charge of q = 2 a.u.
and an energy of ε = 10 a.u. .

Next, I consider the boundary value problem for the full molecular potential (Eq. 2.99)

(h0 + v)|PLMε 〉 = ε|PLMε 〉. (2.113)

This boundary value problem is formally solved by the Lippmann-Schwinger equation

|PLMε 〉 = |P 0
ε,LM 〉+G0(ε)v|PLMε 〉, (2.114)

where G0(ε) is the Greens operator defined as

G0(ε) := lim
η↘0

1

2

(
1

ε− h0 + iη
+

1

ε− h0 − iη

)
. (2.115)

Iteratively reinserting the left hand side of Eq. 2.114 into the right hand side starting
with |PLMε 〉 = |P 0

ε,L,M 〉, results in the Born series

|PLMε 〉 = |P 0
ε,L,M 〉+G0(ε)

(
v + vG0(ε)v + vG0(ε)vG0(ε)v + . . .

)
|P 0
ε,L,M 〉. (2.116)
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The spatial representation of G0(ε) is obtained by contour integration3 after inserting
the full set of the solution of the undistorted boundary problem (Eq. 2.111), which
yields

〈r, l,m|G0(ε)|r′, l1,m1〉 = −π
2
Fl(r<)Gl(r>)δl,l1δm,m1 . (2.117)

Inserting this expression for the Greens operator G0(ε) into the Born series yields for
r →∞

〈r, l,m|PLMε 〉 = PLMε,l,m(r)
r→∞−→ Fl(r)δl,Lδm,M + Gl(r)Rlm,LM , (2.118)

where the elements of the reactant matrix R are

Rlm,LM := −π
2

∫ ∞
0

dr′
∫ ∞

0
dr′′Fl(r′) 〈r′, l,m|v + vG0(ε)v . . . |r′′, L,M〉 FL(r′′).

(2.119)

Equation 2.118 reveals that for r → ∞ the elements 〈r, l,m|PLMε 〉 of the solution
vector PLM

ε (r) are given by linear combinations of the Coulomb wave function Fl(r)
and Gl(r). In this asymptotic limit, the element PLMε,LM (r) has unit contribution from
the regular Coulomb function FL(r) and contributions in the irregular Coulomb function
Gl(r) specified by the matrix element RLM,LM . Other contributions, PLMε,lm(r) with l,m 6=
L,M , are given by the irregular Coulomb function Gl(r) with an amplitude specified
by the off-diagonal elements of the reactant matrix R. Thus, the entries in matrix R

reflect how strong the solution differs from the solution of the undistorted boundary
value problem with a Coulomb potential of a single point charge and, in particular, how
strong a mixing of different angular contributions (lm) is caused by the non-isotropic
parts of the molecular potential. Notably, the reactant matrix R is symmetric, as v and
G0 are symmetric with respect to angular components (lm) (both are hermitian). This
important property allows normalizing the solutions according to Eq. 2.109. It turns out
that the inner products of the |PLMε 〉 vector functions are entirely determined by their
asymptotic behavior (Eq. 2.118). Therefore, it follows from the orthogonality of Fl(r)
and Gl(r) that

〈PLMε |PL′M ′ε′ 〉 = δ(ε− ε′)(δLL′δMM ′ +
∑
lm

Rlm,LMRlm,L′M ′). (2.120)

The energy normalized solutions according to Eq. 2.109 are then obtained [26] by the

3The calculation is equivalent to the calculation in Ref. [93] p. 209 for the potential free case
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linear combination of solution vectors

P̃LMε,lm(r) =
1√

1 + λ2
LM

∑
L′M ′

ULML′M ′P
L′M ′
lm (r), (2.121)

where the vectorsULM solve the symmetric eigenvalue problem

RULM = λLMULM . (2.122)

In this way, the energy normalized (see Eq. 2.109) solutions to the perturbed radial
Schrödinger equation are obtained by matching the solution vector PLM

ε for large r with a
linear combination of the regular and irregular Coulomb wave functions Fl(r) and Gl(r).
The energy normalized solutions P̃LMε (r) then serve as basis vectors for evaluation of
matrix elements for Auger decay and ionization processes.

2.4 Numerical procedure for solving the continuum wave
function

In this section, I discuss some of the numerical issues relevant for finding the solution of
Eq. 2.99.

2.4.1 Grid points

With an equidistant discretization of the differential equation 2.99, numerical errors
may produce severe problems at those positions, where the effective potential becomes
singular. This is the case at r = 0, where for l 6= 0 the centrifugal term is singular
and also at the positions of the nuclei, where the electrostatic attraction of the nuclei is
singular. These potential singularities are handled efficiently by increasing the density
of grid points at these positions, while having a lower density of grid points at those
positions where the effective potential is small.

Thus, before discretizing the differential equation, I used a transformation described
in Refs. [27] and [26] to generate non-equidistant radial grid points. For this purpose, I
mapped the physical distance r to a variable ρ implicitly defined by

ρ(r) := αr + β ln r +

nuclei∑
p

arctan
Rp − r
γp

. (2.123)
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For positive α, β, and γp, ρ(r) is monotonously increasing and when ρ(r) is discretized
equidistantly by

ρn = ρ0 + n · h, (2.124)

the grid points r(ρn) are more densely concentrated at r → 0 and at the radial distances
of the nuclei Rp. Further, the solutions for the transformed equidistant grid points ρ
were renormalized via

Flm(ρ) :=

√
dρ(r)

dr
Plm(r(ρ)) :=

√
ρ′Plm(r), (2.125)

such that the differential equation 2.99 for Plm(r) transforms into

d2

dρ2
F(ρ) = − 1

ρ′2

(
M̃(ρ)F(ρ)− 2X[F](ρ)

)
, (2.126)

with

M̃lm,l1m1(ρ) := Mlm,l1m1(r(ρ)) + δll1δmm1

(
1

2

ρ′′′

ρ′
− 3

4

(ρ′′)2

(ρ′)2

)
. (2.127)

Thus, by introducing the variable transformation ρ(r), the second order differential
equation for Plm(r) yields a similar second order differential equation for the renormalized
solution Flm(ρ), but with additional potential terms (Eq. 2.127).

2.4.2 Vector sweep integration for Eq. 2.126 with
given X

In this subsection, I describe how I numerically solved the coupled differential equa-
tion 2.126 for the renormalized solution Flm(ρ). The method I used for this task is
largely based on the procedure presented in Ref. [27]. Equation 2.126 is non-local be-
cause the right hand side depends on X[F]. This non-locality is treated iteratively by
inserting the respective last iterate of F into X[F] so that the right hand side can be con-
sidered known and one can solve the equation locally. Details of the embedding iteration
are given below.

The Numerov scheme [14] is used to discretize the second order derivative in Eq. 2.126.
It relates the value Fn of the function F(ρ) at grid point ρn to its two neighboring grid
points by

An+1Fn+1 −BnFn + An−1Fn−1 = fn +O(h4). (2.128)
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The matrices A, B and f are defined by

An := 1− h2 1

12

1

ρ′2n
M̃(ρn), (2.129)

Bn := 2 + h2 10

12

1

ρ′2n
M̃(ρn), and (2.130)

fn := h2 1

12

2

ρ′2n
(X(ρn+1) + 10X(ρn) + X(ρn−1)) . (2.131)

Together with the asymptotic boundary condition at the two outermost grid points
N and N − 1,

1

ρ′N
(FLMlm )N = ((Fl)NδLM,lm +RLM.lm(Gl)N ) , (2.132)

1

ρ′N−1

(FLMlm )N−1 = ((Fl)N−1δLM,lm +RLM.lm(Gl)N−1) , (2.133)

the boundary value problem can be written as a system of linear equations with a blocked
tridiagonal matrix as

B1 A2

A1 B2 A3

. . .
An−1 Bn An+1

. . .
AN−2 BN−1 AN

1
ρ′N−1

1 0 −GN−1

0 1
ρ′N

1 −GN





F1

F2

...

...
FN−1

FN

R


=



f1

f2
...

...
fN

FN−1

FN


,

(2.134)
where here, Fn and Gn are now diagonal matrices with the values of the regular and irregu-
lar Coulomb functions at grid point n, respectively, as diagonal elements.

This linear equation was solved by a block variant of the Thomas-Algorithm [14],
which consists of two distinct steps. In the first step, the forward sweep, the lower
secondary diagonal of the matrix is removed, while in the second step, the backward
sweep, the upper secondary diagonal is removed. Specifically, in the backward-sweep two
neighboring points of the solution vectors are related by

Fn = Un + VnFn+1. (2.135)

The two matrices Un and Vn are determined by insertion into Eq. 2.128. This gives the
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iterative relation for the forward sweep

Vn = (Bn −An−1Vn−1)−1 An+1, (2.136)

Un = (Bn −An−1Vn−1)−1 (An−1Un−1 − fn) . (2.137)

The inner boundary conditions define the starting values for the matrix series V and
U as [27]

U1 = U2 = 0, (2.138)

V1 = V2 = V = (B2 −A1V)−1A3, (2.139)

where the last equation is solved iteratively. Inserting relation 2.135 into Eq. 2.118
determines the unknown symmetric matrix R as

R = −
(
UN−1 + ρ′NFNVN−1 − ρ′N−1FN−1

) (
ρ′NGNVN−1 − ρ′N−1GN−1

)−1
, (2.140)

where the matrixUN is now composed of the vectorsUN from Eq. 2.137.

In summary, the linear Eq. 2.126 was solved by first calculating the matrices Vn and
Un from relation 2.137. Having determined the matrix R via relation 2.140, the value
of the solution vector at the largest grid point FN was determined via Eq. 2.118 and the
solution vectors for all the degenerate solutions were calculated by iterating relation 2.135
backwards. The involved matrix operations were carried out using standard linear algebra
libraries [3]. The evaluation of the regular and irregular Coulomb functions Fl(r) and
Gl(r) was performed using the Gnu Scientific Library [38].

Note, that this block algorithm for solving Eq. 2.134 can numerically be unstable for
||Bn|| ≤ 2||An|| [97].4 The reverse condition for numerical stability is not fulfilled for all
grid points. To improve the numerical stability I used a pivot strategy for the grid points
where ||Bn|| > 2||An|| which is similar to that used in the Gauss-elimination for non-
block tridiagonal matrices [14]. It follows, that at those grid points with ||Bn|| > 2||An||,
the solution has to be back iterated via

Fn−1 = A−1
n−1 (fn −An+1Fn+1 + BnFn) , (2.141)

instead of relation 2.135. The total procedure is summarized as pseudo-code in Ta-
ble 2.3.

4|| · || is here the Frobenius matrix norm.
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To validate the precision of the obtained solution, the relative residual

||TF− f ||∞
||T||∞||F||∞ + ||f ||∞

(2.142)

was verified [28], where here T is the block tridiagonal matrix from Eq. 2.134, F the
matrix built up from all solution vectors column-wise, and f is the right hand side of
Eq. 2.134.

Table 2.3: Vector sweep algorithm: Solves the coupled boundary value problem given by
Eq. 2.134 for the solution vector Fn and R.

Given: An for n = 1, . . . , N − 1, Bn, fn for n = 1, . . . , N
and Fn,Gn,F ′n,G′n for n = N,N − 1
Inner boundary condition:
U1,U2 ← 0
Find V solving (B2 −A1V)−1A3

V1,V2 ← V
Forward sweep:
for all n = 3, . . . , N − 1 do
Vn ← (Bn −An−1Vn−1)−1 An+1

Un ← (Bn −An−1Vn−1)−1 (An−1Un−1 − fn)
end for
Outer boundary condition:
R← −

(
UN−1 + ρ′NFNVN−1 − ρ′N−1FN−1

) (
ρ′NGNVN−1 − ρ′N−1GN−1

)−1

(FLMlm )N ← ρ′N ((Fl)NδLM,lm +RLM.lm(Gl)N )
FN−1 ← UN−1 + VN−1FN
Backward sweep with pivoting:
for all n = N − 2, . . . , 1 do

if ||Bn|| > 2||An|| then
Fn ← A−1

n (fn+1 −An+2Fn+2 + Bn+1Fn+1)
else
Fn ← Un + VnFn+1

end if
end for

2.4.3 Iteration of the non-local Eq. 2.126 with X[F]

The inhomogeneity term X[F] in the differential equation depends non-locally on the
solution F of the differential equation. Therefore, a new solution F(i) was determined by
iteratively reinserting the previously determined solution F(i−1) until the series defined
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by
d2

dρ2
F(i)(ρ) = − 1

ρ′2

(
M̃(r)F(i)(ρ)− 2X[F(i−1)](ρ)

)
, (2.143)

converges, i.e., the solution is found to be self-consistent. For the calculations performed,
I confirmed the convergence by ensuring that the difference between elements of the
matrix R in subsequent iterations is smaller than a certain threshold ε. Specifically, I
assumed the solution to be converged, if

ηi := maxlm,l1m;|Rilm,l1m1
−Ri−1

lm,l1m1
| < ε. (2.144)

As initial guess, the solution was chosen to be zero, i.e. no inhomogeneity f was taken
into account in the first iteration. When solutions for different electronic bound states
yielding slightly differing potential functions were subsequently solved, it turned out to
be advantageous to use the solution for the previously determined electronic bound state
as initial guess.

To accelerate the convergence of the solution, I used an acceleration scheme simi-
lar to the Aitken procedure [14]. In particular, I used the following two acceleration
steps:

1. If in three subsequent iterations i − 2, i − 1, i the quantities ηi−2, ηi−1, ηi have
identical signs, are drawn from the same matrix element Rl,m, and ηi < ηi−1 < ηi−2,
then the inhomogeneity for the following iteration i+ 1 is linearly extrapolated as

X̃ =

(
1− 1

1− ηi/ηi−1

)
X[Fi] +

1

1− ηi/ηi−1
X[Fi−1]. (2.145)

2. If in three subsequent iterations i − 2, i − 1, i the quantities ηi−2, ηi−1, ηi have
alternating signs, are drawn from the same matrix element Rl,m, and |ηi| < |ηi−1| <
|ηi−2|, then the inhomogeneity for the next iteration is linearly interpolated as

X̃ =

(
1− 1

2
ηi/ηi−1

)
X[Fi]− 1

2
ηi/ηi−1X[Fi−1]. (2.146)

3. Else, the inhomogeneity for the next iteration is

X̃ = X[Fi] (2.147)

With these two accelerating iteration rules (1 and 2), the necessary number of iterations
could be reduced significantly.
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2.4.4 Normalization

The procedure described in the previous subsections 2.4.2 and 2.4.3 yields solution vectors
complying with the asymptotic boundary condition (see Eq. 2.118)

PLMε,l,m(r)
r→∞−→ Fl(r)δl,Lδm,M + Gl(r)Rlm,LM . (2.148)

Thus, the solutions are not yet properly energy normalized. As derived in subsec-
tion 2.3.2, I obtain energy normalized solutions P̃LMε,lm(r) from the linear combination

P̃LMε,lm(r) =
1√

1 + λ2
LM

∑
L′M ′

ULML′M ′P
L′M ′
lm (r), (2.149)

where the vectorsULM are solutions to the eigenvalue problem

RULM = λLMULM . (2.150)

2.4.5 Radial truncation

The value of the largest grid point has to be chosen such that the molecular potential has
reached its asymptotic behavior within the covered radial range. At the largest grid point,
the molecular potential is supposed to be similar to that of a single point charge and the
solution can thus be mapped to the Coulomb wave functions Fl(r) and Gl(r). To confirm
the choice of the largest grid point, I checked whether the calculated molecular potential
Jl1m1,l2m2(r) + V ne

l1m1,l2m2(r) has relevant non-isotropic contributions, i.e. the contribu-
tions for l1 6= l2 6= 0 are much smaller than for l1 = l2 = 0. For the molecules considered,
a choice of rmax = 15 a0 turned out to be sufficient.

2.4.6 Truncation of angular quantum numbers

The angular expansion has to be truncated at some maximal value of angular quantum
numbers l and m to make the calculation feasible. This relies on the assumption that
higher angular momentum solutions are practically not influenced by the molecular po-
tential as the centrifugal potential term l(l+1)/r2 dominates for large l over the molecular
potential. Furthermore, depending on the angular momentum of the involved molecular
orbitals in the ionization process, an electron can only be transferred into a continuum
wave function with a limited angular quantum number. Thus, only the continuum so-
lutions with limited angular momentum are accessible, and continuum wave functions
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with high angular momentum do not contribute to the Auger and photo-ionization pro-
cess.

The choice of the truncation of the l,m-angular quantum numbers is also related to
the choice of center of the decomposition. A necessary but not sufficient condition for the
truncation is that with the maximal angular resolution ∼ 2π/lmax, all relevant molecular
orbitals can be described. Usually, the core orbitals as the most localized orbitals are
therefore difficult to represent within the single center expansion. For small systems con-
taining only one central heavy atom, e.g., first row hydrides like H2O, it is advantageous
to set the center of decomposition on the position of the central heavy atom, e.g. oxygen
in H2O. With this expansion center, it turned out that the maximum l quantum number
in first row hydrides can be reduced to l ≤ 5.

For molecules with two or more K shells, the required angular resolution is much
higher. Choosing the center of decomposition at the molecule’s center of mass, the
absolute value of the m quantum number can be reduced to some tractable maximal
value. To make the calculations for linear molecules feasible, an adapted truncation
scheme was used. Here, it must be considered that in a molecular photo-ionization
process an emitted electron can at maximum obtain additional angular momentum of
l± 1 or m± 1. For the Auger process, an emitted electron may at maximum carry away
the total angular momentum of two bound electrons. Thus, e.g., the Auger decay process
in acetylene (or ethyne) involving π-orbitals (m = ±1) can be described with m quantum
numbers |m| ≤ 2, whereas the l quantum numbers needs to cover much higher values,
i.e. l ≤ 20.

2.4.7 Exchange potential approximation

The numerical procedure presented in subsection 2.4.3 can be simplified by avoiding the
inhomogeneity term X[P] on the right side of Eq. 2.99. Instead of the inhomogeneity
term, I approximated in most calculations the exchange interaction with an exchange
interaction potential. Here the Kohn Sham Gaspar (KSG) approximation [39] was used,
which replaces the inhomogeneous partX[P] by the potential term

VXC[ρ(r)] = −
(

3

π
ρ(r)

)1/3

. (2.151)

The cubic root of the electron density ρ1/3 was numerically calculated by computing the
electron density ρ(r) at each point of a sphere from its spherical harmonic decomposi-
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tion

ρ(r) =
∑
lm

Ylm(θ, φ)
∑

l1m1,l2m2

(l1m1|l2m2lm)∗
∑
i,j

Pi,lm(r)P ∗j,lm(r)

r2
ρi,j (2.152)

=:
∑
lm

Ylm(θ, φ)
ρlm(r)

r
, (2.153)

and numerically decomposing the cubic root of the electron density ρ1/3(r) again into
the spherical harmonics by a Gauss-Legendre integration(

ρ1/3
)
lm

(r) = r

∫
dΩY ∗lm(θ, φ)ρ1/3(r). (2.154)

For small molecules, such as the first row hydrides, the electron density is mostly spher-
ically symmetric. For these molecules I avoided the expensive numerical computation of
the electron density and subsequent decomposition of its cubic root by approximating
the cubic root of the electron density by the Taylor series

ρ(r)1/3 =Y00(θ, φ)1/3 (ρ00/r)
1/3

+1/3
∑
l 6=0
m 6=0

Ylm(θ, φ)ρlm(r)

Y00(θ, φ)ρ00(r)
+O(ρlm(r)/ρ00(r))2, (2.155)

truncated at first order of the non-spherically symmetric term of ρlm(r).

2.4.8 Calculation of transition amplitudes

Having obtained the numerical representation of the energy normalized continuum wave
function, the relevant transition amplitudes involving these continuum wave function
can now be calculated. The dipole matrix element, the one-particle Hamiltonian and the
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Coulomb matrix elements read in the single center expansion

〈φi|rλ|φLMε 〉 =

√
4π

3

∫ ∞
0

dr r
∑
l1m1
l2m2

Pε,l1m1(r)Pi,l2m2(r) (l2m2|l1m1, 1λ), (2.156)

〈φi|h|φLMε 〉 =
∑
lm

∫ ∞
0

dr

(
1

2

dP ∗i,lm(r)

dr

dPLMε,lm(r)

dr

+
∑
l1m1
l2m2

P ∗i,lm(r)V ne
lm,l1m1

(r)PLMε,l2m2
(r)

)
, (2.157)

〈ij|1
r
|kε〉 =

∑
lm, l1m1, l2m2,
l3m3 ,l4m4

4π (l3m3|l4m4, lm)(lm, l1m1|l2m2)

2l4 + 1∫ ∞
0

dr P ∗i,l3m3
(r)Pk,l4m4(r) yl[P

∗
j,l1m1

PLMε,l2m2
](r), (2.158)

where the indices i, j, k denote bound molecular orbitals and ε denotes the continuum
wave function, respectively. As can be seen, all of these expressions involve a single radial
integration. The numerical evaluation of these matrix elements was performed on the
radial grid using Simpson’s rule [14]. For the calculation of the one-particle Hamiltonian
matrix elements (Eq. 2.157), the derivatives dPi,lm(r)/dr were approximated by finite
differences.

In summary, I have given in this section all relevant numerical details which were
used to obtain the continuum wave function in the vicinity of a molecule and to cal-
culate bound-continuum interaction amplitudes. Specifically, I have considered photo-
ionization and Auger decay transitions. The evaluation of these quantities allows to
determine the electron dynamics and, in particular, to calculate ionization and Auger
decay rates.
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3.1 Auger decay in neon

In this section, I validate the computational approach introduced in the previous chapter
and test the convergence with respect to different basis sets, to the CI truncation, and
to the number of radial grid points. I consider the Auger decay of single K-shell ionized
neon, which has been well studied before [9, 19, 100].

First, I will show how the calculated energies for a core ionized initial state and,
exemplarily, two different doubly valence ionized final states converge with respect to
the used basis set and CI truncation scheme. Then, I will discuss the convergence of the
calculated decay rates with respect to the size of the basis set, the CI truncation scheme,
and the number of radial grid points used. Finally, I will compare the calculated Auger
decay rates with the experimental spectrum.

3.1.1 Convergence of initial and final state energies with respect to basis
sets and CI truncation

To test the convergence with respect to the basis sets, I used four different basis sets con-
sisting of Gaussian functions contracted to a finite number of basis functions. The basis
sets and the number of contractions are listed in Table 3.1.

In all calculations, molecular orbitals were obtained in a restricted open shell Hartree-
Fock (ROHF) calculation for the initial, core ionized state using the psi3 quantum chem-
istry package [24]. These molecular orbitals were then used in a single reference CI cal-
culation to describe the core ionized states. In particular, the CI truncation scheme
introduced in subsection 2.1.3 was used with the additional restriction, that the core
orbital is singly occupied in all involved configurations. Figure 3.1 shows the energy of
the single core ionized state of neon (1s−1) obtained with different basis sets and dif-
ferent CI truncations, respectively. With the CISD truncation scheme in combination
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Table 3.1: Basis sets which were employed in the calculations and their number of con-
tractions for neon. The letters s, p, d, f, g denote the angular symmetry of
respective basis functions.

Basis set Number of Number of
Gaussian primitives contractions

3-21G [11] 6s 3s
3p 2p

cc-pVDZ [95]
10s 4s
5p 3p
2d 2d

cc-pVTZ [95]

12s 6s
7p 5p
3d 3d
1f 1f

cc-pVQZ [95]

15s 8s
9p 7p
5d 5d
3f 3f
1g 1g

with the cc-pVTZ basis set, the absolute energy converged within few eV ' 0.1 a.u.

The same set of molecular orbitals was used to describe final states of the Auger
process. Note, that the molecular orbitals have been optimized for the core ionized states,
such that the description of initial and final electronic states may be unbalanced. This
imbalance is compensated by using multiple references in the configuration interaction
calculations for the final double valence vacancy states. The set of references was chosen
from all ten possible combinations with two holes in the four valence electron orbitals.
From these references, the space of configuration state functions was built up from a
finite number of excitations into the unoccupied MOs.

For two final electronic states of the K-LL Auger process, the 2s−2(1S) and 2p−2(1D)

states, Figure 3.2 shows the calculated energies as a function CI truncation scheme for
different basis sets. As can be seen, with the MRCISD truncation and the cc-pVTZ basis
set, the energy converged to within ' 0.1 a.u.

Thus, for both, initial and final states, the combination of the cc-pVTZ basis set
with the (MR)CISD truncation scheme provides electronic states for which the absolute
energy is converged within 0.1 a.u. ' 2.7 eV. This combination is thus chosen for further
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Figure 3.1: Convergence of calculated single core ionized state energy of neon with respect
to CI truncation and basis set. With the CISD truncation and cc-pVTZ basis
set the computed energy is converged within ' 0.1 a.u..

calculations. Note, that the energy differences, which are relevant for the calculation
of Auger spectra, can be expected to be even more accurate, because most correlation
effects contribute similarly to initial and final state energy and thus tend to cancel out.
This is demonstrated in Fig. 3.3 where the transition energy (energy difference) for the
same states, as considered in Fig. 3.2 and Fig. 3.1, is shown as a function of the CI
truncation scheme and with different basis sets. As can be seen, the transition energies
change by less than 1 eV with a basis set larger than the cc-pVTZ basis set and with a
CI truncation scheme beyond (MR)CISD.

Note, that relativistic contributions to the transition energies, which are of the order
of 1 eV [72], were neglected here. It can be assumed that these contributions are approx-
imately the same for each final state, such that they may give rise to a constant shift of
transition energies.
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Figure 3.2: Convergence of calculated double valence ionized state energy of neon with
respect to CI truncation scheme and chosen basis set. Exemplary, two states
are shown: the upper crosses show the 2s−2(1S) state, the lower crosses set
the 2p−2(1D) state. With the MRCISD truncation and the cc-pVTZ basis
set, the computed energy is converged within ' 0.1 a.u.

In summary, for the calculations of the transition energies of neon, the combination of
the cc-pVTZ basis set and the (MR)CISD truncation scheme results in transition energies
which are accurate within 1 eV. This accuracy is sufficient to resolve individual features
of the Auger electron emission spectrum, as the individual transition energies spread
over a spectral range of about 60 eV (' difference between 2s−2(1S) and 2p−2(1D) final
state).
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Figure 3.3: Transition energies for the K-LL Auger decay calculated with different basis
sets and CI truncations. Exemplary, two states are shown: the upper crosses
depict the transition energy for the 2s−2(1S) final state, the lower crosses the
2p−2(1D) final state. As can be seen, the transition energies at CISD level
with cc-pVTZ basis change by less than 1 eV with increased basis set and CI
truncation.

3.1.2 Convergence of transition rates with respect to basis set and CI
truncation

In this subsection, the convergence of the calculated Auger transition rates, with respect
to the basis set and CI truncation scheme for the K-LL Auger transition of neon, is
studied. Throughout this section, 2000 radial grid points were used. The largest radial
grid point was chosen to be 20a0. The center of expansion was chosen to be at the position
of the nucleus. Because of the isotropic symmetry of the problem and the number of
electrons (single atom, s and p electrons), the angular truncation of lm angular quantum
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numbers to l,m ≤ 2 is exact.

For the same two final states (2s−2(1S) and 2p−2(1D)), which were considered in the
previous section, Fig. 3.4 shows the calculated transition rates as a function of the CI
truncation scheme calculated with different basis sets. For comparison, also results using
exact exchange and the KSG exchange potential for the determination of the continuum
electron wave function are shown. As can be seen, with increasing basis set size and CI
truncation scheme the transition rates converge. Beyond the CISD truncation scheme,
the calculated rates show almost no dependence on the CI truncation, whereas the de-
pendence on the basis set is much stronger. A relative difference of less than 5%, when
changing from a cc-pVTZ to a cc-pVQZ basis set, is seen. Using the KSG exchange
interaction approximation yields transition rates, which deviate slightly from the rates
calculated with the exact exchange.

To further investigate the validity of the KSG exchange approximation, Table 3.2
compares all K-LL Auger transition rates for neon calculated with exact exchange to
those calculated with the approximated exchange potential. The transition rates differ in
all but one case by less than 5%. The rate for the triplet transition 1s−1 → 2s−12p−1(3P )

differs by 14.5%. The total decay rate deviates by about 3.3%. Relativistic effects are
known from atomic calculations [19] to be relevant for atomic numbers Z ≥ 35 and were
therefore neglected here.

Table 3.2: Calculated K-LL Auger transition rates in 10−3 a.u and transition energies in
eV for neon (cc-pVTZ basis, CISD/MRCISD).

Final state Transition Γi→f Γi→f Relative
energy (exact exchange) (approx. exchange) difference

2p−2(1D) 804.24 4.903 5.122 +4.4%
2p−2(1S) 800.53 0.716 0.749 +4.6%
2s−12p−1(1P ) 771.33 1.726 1.680 −2.6%
2s−12p−1(3P ) 782.14 0.719 0.823 +14.5%
2s−2(1S) 747.76 0.706 0.688 −2.5%

total rate 8.769 9.062 +3.3 %

In summary, with a (MR)CISD truncation scheme and the cc-pVTZ basis set, the
transition energies are converged to within 0.1 eV, and the transition rates by about
5%. The use of the KSG exchange potential approximation is justified within these error
bounds.
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Figure 3.4: Calculated K-LL Auger transition rates with different CI truncations, basis
sets, and exchange interaction models for the two final states shown in Fig.
3.2 (the upper triangles / circles show the 2p−2(1D) final state, the lower
triangles / circles the 2s−2(1S) final state). Triangles denote rates calculated
with exact exchange contribution, circles denote rates calculated with the
KSG exchange approximation. The color indicates the used basis set.

Convergence of decay rates with respect to the radial
grid

To validate the numerical calculation of the continuum wave function and the Auger
decay rates, the calculated transition rates for the K-LL Auger decay of neon were com-
pared using different radial integration steps and the convergence was tested. From the
Numerov integration scheme, a discretization error proportional to the power of ∆r4 is
expected. Because non-equidistant grid-spacing is used, convergence of the calculated
transition rates is here considered as a function of the asymptotic grid-spacing ∆r at
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Figure 3.5: Relative error for the calculated Auger transition rates calculated with
cc-pVTZ basis and (MR)CISD truncation scheme with exact and approx-
imated exchange interaction as a function of the asymptotic grid spacing.
The dotted line illustrates the ∆r4 power law, which is expected from the
discretization error according to the Numerov scheme. The circles denote
calculations with KSG exchange approximation, triangles denote calculations
with exact exchange. The color denotes the respective final state.

r → rmax. Figure 3.5 shows the relative deviation of the calculated transition rates as a
function of ∆r for both types of calculations, with exact exchange and with KSG exchange
approximation. The reference solution was calculated with N = 5000 grid points, which
yields an asymptotic grid spacing of ∆r ' 0.004a0. All calculations were performed using
the CISD truncation scheme and the cc-pVTZ basis set.

As can be seen, for larger asymptotic grid spacing ∆r, all the calculated transition
rates follow the expected discretisation error. For ∆r below 0.03 a.u., the calculated
values obtained with exact exchange deviate from the power law, and the relative error
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shows a systematic offset from the ∆r4 law. This behavior can be explained with addi-
tional numerical errors, which occur when obtaining the solution in an iterative scheme.
Nevertheless, both calculation schemes (with exact exchange and with KSG exchange
approximation) converge.

3.1.3 Auger spectrum of neon after single and double core
ionization

To further validate the calculated transition rates, they are compared in Fig. 3.6 with
the measured K-LL Auger spectrum, using values obtained with the KSG exchange ap-
proximation (see Table 3.2). As can be seen, most features of the experimental spectrum
are well represented by the calculated transition rates. The small peaks measured at
755–765 eV and at 785–795 eV are due to initial state shake-off and shake-up contribu-
tions[66].

Similar to the K-LL case, I next compare the experimentally determined KK-KLL
spectrum, which occurs after double ionization of the K-shell, with the calculated transi-
tion rates and energies using the KSG exchange approximation. In Fig. 3.7 the measured
spectrum by Southworth et al. [85], obtained via single-photon double ionization, is shown
together with the calculated transition rates. To isolate the KK-KLL spectrum, the mea-
sured spectrum had to be subtracted from the background of the 2p−2(1D) line of the
K-LL Auger spectrum. Thus the spectral range below 820 eV is missing in the exper-
imental spectrum. As can be seen, the measured spectrum shows more structure than
the calculated transitions provide. The additional peaks at ' 845–865 eV were inter-
preted by Southworth et al. [85] as additional state shake-up contributions in the initial
1s−2(1S) state, in particular the additional excitations 2p → 3p(1S) and 2s → 3s(3S).
These shake-up states are not relevant within the present context, and were therefore
not included within the calculations performed here. They may, however, easily be con-
sidered by performing calculations using initial states, which resemble possible shake-up
excitations.
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Figure 3.6: Calculated transitions compared to the measured K-LL Auger spectrum.
The red vertical lines depict the calculated spectrum (cc-pVTZ basis,
CISD/MRCISD, approximated exchange potential), after shifting the transi-
tion energy by 0.9 eV. The calculated transitions are labeled with the domi-
nant hole configuration and the symmetry of the respective final states. The
dashed line represents the measured spectrum taken from Ref. [85]. Most
features of the experimental spectrum can be obtained from the calculation.
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Figure 3.7: Calculated transitions compared to the measured KK-KLL Auger spec-
trum. The red vertical lines depict the calculated spectrum (cc-pVTZ basis,
CISD/MRCISD, approximated exchange potential), after shifting the transi-
tion energy by 0.9 eV. The calculated transitions are labeled with the domi-
nant hole configuration and the symmetry of the respective final states. The
dashed line represents the measured spectrum taken from Ref. [85]. Addi-
tional peaks at ' 850 − −870 eV are due to shake-up contributions in the
initial state.
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3.1.4 Discussion

In this section, the procedure for calculation Auger decay rates was validated and its
accuracy was systematically assessed with respect to all relevant parameters. These in-
clude the choice of basis set, the CI truncation scheme, and the radial grid size. This
analysis revealed that the cc-pVTZ basis set and a (MR)CISD truncation scheme is
a reasonable choice for evaluating Auger decay rates in neon and suggests that the
same choice of parameters is appropriate to study other electron systems of similar
size.

The comparison of the transition rates obtained by exact interaction and the KSG
exchange approximation showed, that for some transitions, the KSG exchange approxi-
mation might bias the result by about 15%. However, this deviation was only observed
for the triplet final state, such that the total sum of decay rates was still in good agree-
ment.

The calculated transition rates were compared with measured spectra and show good
agreement for both cases, the K-LL and the KK-KLL Auger decay. In summary, the
presented method to calculate Auger transitions yields reliable results for transition rates
as well as for transition energies.

3.2 Auger spectrum of water after single and double core
ionization

3.2.1 Introduction

In this article, we applied the method described in the previous chapter to study the
evolution of a small molecule exposed to an intense X-ray pulse. As an example, we in-
vestigated the Auger spectrum of a water molecule after single and double core ionization.
To study the dissociation of the water molecule and to estimate the vibrational broaden-
ing in the spectrum, we performed excited state molecular dynamics (MD) simulations,
that follow the dissociative motion of the nuclei in the single and double core ionized
state. From different snapshots of the MD simulations, Auger spectra were calculated
and accumulated. The water molecule was chosen as a test system, because it is biolog-
ically relevant, and the limited number of electrons (10) allows for applying high level
quantum chemical methods. Also, a number of previous studies on the Auger spectrum
of water after single core ionization [16, 70, 84, 88] allowed for a direct comparison of
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both measured and calculated spectra with obtained results. The article was published
in the Journal of Chemical Physics.

The main results of this study are:

• The presented approach to calculate bound-continuum transitions yields transition
rates that compare well to other ab-initio approaches and experimentally deter-
mined ionization line-widths.

• The calculated Auger spectrum of a water molecule after single core ionization
agrees very well with measured spectra [70].

• In the double core ionized state, the molecule rapidly dissociates via repulsion of
both protons. In contrast, the molecule remains bound in the single core ionized
state .

• The strong dissociative motion in the double core ionized state blurs the Auger
spectrum. Specifically, the rapid dissociation causes marked tails on the right (up-
shifted) side of each peak in the spectral part associated with the double K-hole
decay.

• The calculated Auger decay rate of the double K-hole is significantly larger than
expected from the calculated single K-hole decay rate.

Individual contributions of the authors
I have developed the CI program, the program for solving the continuum solutions and
for calculating the transition rates. I have performed all the calculations on the insti-
tute’s computer cluster, provided the analysis of the results, and drafted the manuscript.
C. F. Burmeister helped with the conception of certain parts of the CI program. G. Groen-
hof helped with the calculation of the core ionized states via the Hartree-Fock method,
H. Grubmüller helped with the inclusion of nuclear dynamics effects in the Auger spec-
trum. G. Groenhof and H. Grubmüller initiated and supervised the project and con-
tributed to the manuscript.
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The high intensity of free electron lasers opens up the possibility to perform single-shot molecule
scattering experiments. However, even for small molecules, radiation damage induced by absorp-
tion of high intense x-ray radiation is not yet fully understood. One of the striking effects which
occurs under intense x-ray illumination is the creation of double core ionized molecules in con-
siderable quantity. To provide insight into this process, we have studied the dynamics of water
molecules in single and double core ionized states by means of electronic transition rate calcula-
tions and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoioniza-
tion and Auger transition rates were computed based on electronic continuum wavefunctions ob-
tained by explicit integration of the coupled radial Schrödinger equations. These rates served to
solve the master equations for the populations of the relevant electronic states. To account for the
nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for differ-
ent molecular geometries were incoherently accumulated according to the obtained time-dependent
populations, thus neglecting possible interference effects between different decay pathways. We find
that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double
core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the result-
ing electron emission spectra. The lifetime of the double core ionized water was found to be sig-
nificantly shorter than half of the single core hole lifetime. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3700233]

I. INTRODUCTION

Ultra intense femtosecond free electron lasers (FEL) al-
low one to study several new phenomena in molecules and
atoms and hold the promise to obtain x-ray scattering infor-
mation from large biomolecules such as proteins at the single
molecule level.1, 2 Molecules exposed to intense x-ray pulses
are expected to undergo severe radiation damage.1 At illumi-
nation conditions in the x-ray regime the dominant electronic
process is photoionization of core electrons into the contin-
uum. These core ionizations trigger autoionization processes,
e.g., Auger decay, which cause refilling of the core hole va-
cancy while emitting a secondary electron that carries away
the excess energy.

Recent theoretical studies have addressed the formation
of multiple core ionized electronic states by x-ray FEL radi-
ation in atoms.3–5 These electronic states mainly result from
sequential photoionization processes where the second pho-
toionization occurs faster than the refilling of the core shell by
Auger decay. Double core hole states are of particular interest
in spectroscopy, as they can provide more insight into molec-
ular structure than conventional single core spectroscopy.6–9

In experiments with intense FEL x-ray pulses at the Linac
Coherent Light Source (LCLS) significant quantities of such
multiple core ionized states in neon atoms10 and nitrogen
molecules11 were observed.

In addition to the pure electronic radiation damage, a
second consequence of the exposure of molecules to intense

a)linhest@gwdg.de.

x-ray radiation is the fast dissociative motion, the so-called
Coulomb explosion, which is triggered by the fast charging
of the molecule. This process has been studied by molec-
ular dynamics force field simulations,1, 12–14 in which elec-
tronic transitions are described stochastically, governed by
atomic transition rates. However, because the molecular dy-
namics strongly depends on the ionization kinetics, accurate
molecular photoionization, and Auger decay rates are desir-
able. From another point of view, Auger spectroscopy may
provide a means to study the ionization dynamics and might
give information on the fast nuclear motion. It is therefore of
interest to elucidate ionization of molecules by intense x-ray
radiation and the formation of the corresponding Auger spec-
tra with respect to the several ionization steps and the rapid
nuclear motion.

One of the main challenges of calculating molecular
Auger decay rates is the appropriate description of the con-
tinuum electron wavefunction, which cannot be represented
by the commonly used square-integrable (L2) basis functions.
Auger transitions for small molecules have been studied in
several approaches, using (i) Stieltjes imaging,15 (ii) solving
the Lippmann-Schwinger equation on a basis of Gaussian-
type functions,16, 17 (iii) the so-called one-center approach us-
ing atomic radial Auger integrals,18 and (iv) based on pop-
ulation analysis.19, 20 The former two approaches rely on an
asymptotical description of the continuum wavefunction with
Gaussian basis functions close to the molecule, whereas the
one-center approach uses atomic continuum wavefunctions.
The method based on population analysis does not include
the continuum electron explicitly.

0021-9606/2012/136(14)/144304/12/$30.00 © 2012 American Institute of Physics136, 144304-1
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Here, we calculated molecular ionization and Auger tran-
sition rates using the single center expansion (SCE) method.21

In our approach the continuum wavefunction is obtained
by explicit integration of a set of coupled (static) radial
Schrödinger equations, whereas the remaining bound elec-
trons are described by usual linear combination of atomic
orbitals (LCAO). This hybrid approach enabled us to ac-
curately represent continuum wave functions while tak-
ing advantage of efficient L2 basis sets for the bound
orbitals.

Using the obtained molecular ionization and Auger decay
rates, time-dependent populations of the single and double
core ionized states were calculated, similarly to previous ap-
proaches for atoms.3–5 To also include effects of nuclear
motion on the Auger spectrum within the core hole life time,
we incoherently summed up instantaneous Auger spectra for
different molecular geometries, obtained by classically prop-
agating the nuclei positions with forces calculated “on the
fly” for the core ionized electronic states. Such approach,
already applied in previous calculations,22, 23 avoids the ex-
plicit computation of the many involved potential energy sur-
faces but neglects possible interference effects on the spec-
trum. Other approaches, which address effects of nuclear
motion in a coherent way and, thereby, are able to address vi-
brational features of the spectrum, rely on pre-calculated po-
tential energy surfaces. For examples, Eroms et al.24 used the
multi-configurational time-dependent Hartree technique to
propagate the nuclear wave packets for the resonant Auger
spectrum of water. Bao et al.25 presented a calculation of the
normal Auger spectrum of the oxygen molecule based on the
Kramers-Heisenberg formula.

As a model system we considered the Auger spectrum
of a singly and doubly core ionized water molecule. While
the single core Auger spectrum (K − LL) of water has been
extensively studied,15, 23, 26 we are not aware of any studies
of its double core Auger spectra (KK − KLL). Our results
confirm that the nuclear motion has little effect on the Auger
spectrum during the few femtoseconds of the core hole life-
time for single core ionized water.23 Strikingly, however, the
nuclear motion of double core ionized water was found to
markedly affect the Auger spectrum due to fast dissociation
dynamics.

The outline of the paper is as follows. Our approach
to determine ionization transition rates is described in
Sec. II. Section III describes the computational details of
the calculations. Results and conclusion are presented in
Secs. IV and V.

II. CALCULATION OF ELECTRONIC IONIZATION
TRANSITIONS RATES

Calculation of ionization rates requires the description
of initial |ψ ini〉 and final |ψfin〉 electronic wave functions. To
clarify the notation, we first describe in Subsection II A how
the final electronic states |ψfin〉 are constructed from a molec-
ular bound part and a continuum part. In Subsections II B and
II C we describe how photoionization cross sections and
Auger decay rates are obtained.

A. Construction of the final electronic state

A total final electronic state |ψfin〉 after ionization is con-
structed by combining a multi-electron bound part |ψ̃fin〉 and a
single electron part described by the continuum electron wave
function φk,σ (r) with energy ε = k2/2 and spin σ . Following
spin addition rules27 the state is given by

∣∣ψ (1)S=1/2
fin,MS=1/2

〉 = c
†
k,α

∣∣ψ̃S=0
fin,MS=0

〉
, (1)

∣∣ψ (2)S=1/2
fin,MS=1/2

〉 = 1√
3

( − c
†
k,α

∣∣ψ̃S=1
fin,MS=0

〉+√
2c

†
k,β

∣∣ψ̃S=1
fin,MS=1

〉)
,

(2)

for doublet states and

∣∣ψS=0
fin,MS=0

〉 = 1√
2

( − c
†
k,α

∣∣ψ̃S=1/2
fin,MS=−1/2

〉+c
†
k,β

∣∣ψ̃S=1/2
fin,MS=1/2

〉)
,

(3)

for singlet states. The additional indices S and MS describe
total spin quantum numbers28 and c

†
k,σ is the creation operator

for a continuum electron with wavefunction φk,σ (r).
For the evaluation of transition rates given by first-order

perturbation theory, matrix elements of an operator O between
initial |ψS

ini,MS
〉 and final states |ψS

fin,MS
〉 have to be calcu-

lated. Assuming O commutes with spin S, expressions for fi-
nal states |ψ (2)S=1/2

fin,MS=1/2〉 and |ψS=0
fin,MS=0〉 can be simplified to29

∣∣〈ψS=1/2
ini,MS=1/2

∣∣O∣∣ψ (2)S=1/2
fin,MS=1/2

〉∣∣2

= 3
∣∣〈ψS=1/2

ini,MS=1/2

∣∣O∣∣c†k,αψ̃S=1
fin,MS=0

〉∣∣2
, (4)

∣∣〈ψS=0
ini,MS=0

∣∣O∣∣ψS=0
fin,MS=0

〉∣∣2

= 2
∣∣〈ψS=0

ini,MS=0

∣∣O∣∣c†k,αψ̃
S=1/2
fin,MS=−1/2

〉∣∣2
. (5)

The bound part |ψ̃S
fin,MS

〉 of the final electronic wavefunc-
tion can be represented by the usual linear combination of
atomic orbitals (LCAO), while the description of the contin-
uum wavefunction φk,σ requires a continuum representation.
Here we represent φk,σ in a single center expansion21 given
by

φk,σ (r) =
∑
lm

P k
lm(r)

r
Ylm(θ, φ), (6)

where Ylm(θ , φ) are spherical harmonics, and the P k
lm(r) are

a set of radial wave functions, which solve the set of coupled
radial Schrödinger equations21

d2

dr2
P k

lm(r) +
∑
l′m′

Mlm,l′m′ (r)P k
l′m′(r) = 0, (7)
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with

Mlm,l′m′(r) := δl′,lδm′,m

(−l(l + 1)

r2
+ 2ε

)

+ 2
∑
l′′m′′

vl′′m′′(r)
∫

d
 Y ∗
lm(θ, φ)

×Yl′′m′′(θ, φ)Yl′m′(θ, φ). (8)

Here,
∫

d
 describes integration over the solid angle and
vlm(r) are the radial parts of the SCE of the potential V(r),
where

V (r) =
∑
lm

vlm(r)

r
Ylm(θ, φ) = Vne(r) + Vee(r)

=
∑
lm

vne
lm(r) + vee

lm(r)

r
Ylm(θ, φ). (9)

Vne(r) is the nuclear potential of the molecule and Vee(r) rep-
resents the interaction of the continuum electron with the re-
maining bound electrons. For the spherical nuclear coordi-
nates Rn, θn, φn of nucleus n = 1. . . N, the radial parts vne

lm(r)
of the nuclear potential are given by

vne
lm(r) =

∑
n

−Znr
rl
<

rl+1
>

Y ∗
lm(θn, φn), (10)

with r< = min(r, Rn) and r> = max(r, Rn) and Zn being the
charge of nucleus n. The electron-electron interaction Vee(r) is
determined by the electrostatic potential of the charge density
ρ̃(r) of the electrons in the bound part |ψ̃fin〉,

J (r) =
∫

dr′ ρ̃(r′)
|r − r′| , (11)

and the shorter ranged exchange part. We used the KSG
(Ref. 30) exchange potential,

VXC[ρ̃(r)] = −
(

3

π
ρ̃(r)

) 1
3

, (12)

to model the exchange interaction, which renders Eq. (7) as
a homogenous differential equation. To further simplify the
calculations, the non-spherical symmetric parts (l �= 0 ) of the
electron density ρ̃(r) in the exchange potential (Eq. (12)) are
approximated by first-order Taylor expansion

VXC[ρ̃(r)] =−
(

3

π

ρ̃00(r)

r
Y00

) 1
3

⎡
⎣1+ 1

3

∑
l �=0,m

ρ̃lm(r)Ylm(θ, φ)

ρ̃00(r)Y00

+O

⎛
⎝ ∑

l �=0,m

ρ̃lm(r)Ylm(θ, φ)

ρ̃00(r)Y00

⎞
⎠

2
⎤
⎥⎦ , (13)

where ρ̃lm(r) are the radial parts of the SCE of the electron
density

ρ̃(r) =
∑
lm

ρ̃lm(r)

r
Ylm(θ, φ). (14)

The radial parts vee
lm(r) of the electron-electron interactions in

Eq. (9) are finally given by the SCE of Coulomb potential J(r)

and the electron density ρ̃(r),

r · vee
lm(r) �

∫
d
Y ∗

lm(θ, φ)J (r) + −1

Y00

(
3

π

ρ̃00(r)

r
Y00

) 1
3

×
{

1 for l = 0

ρ̃lm(r)/(3ρ̃00(r)) else.
(15)

Subsequently, the energy-degenerated solutions of
Eq. (7), P

′k,LM
lm (r), are labeled by the additional index tuple

LM. They are required to fulfill the boundary conditions

P
′k,LM
lm (r → 0) = 0, (16)

P
′k,LM
lm (r → ∞) =

√
2

πk
(δLM,lmFl(kr) + RLM,lm Gl(kr)).

(17)

Fl(kr) and Gl(kr) are the regular and irregular Coulomb func-
tions and RLM,lm are elements of an hermitian matrix R deter-
mined by the asymptotic behavior of the solutions.21

The above mentioned boundary conditions do not pro-
vide an energy-normalized solution, as required for correct
transition rates. Hence, energy normalization is achieved by
the linear combination31

P
k,LM
lm (r) =

∑
L′M ′

1√
1 + λLM

ULM,L′M ′P
′k,L′M ′
lm , (18)

where the columns of U and λLM are eigenvectors and eigen-
values of the Matrix R, respectively.

Note, that here the bound electrons are considered to be
not affected by the continuum electron, thus the bound elec-
tron part can be calculated independently. To evaluate elec-
tronic transition rates, electron integrals between bound and
continuum electrons have to be calculated. For the purpose
of calculating these quantities within the SCE, also the bound
orbitals are expanded into the SCE as in Eq. (6).

B. Photoionization

Following first-order perturbation theory, the photoion-
ization cross sections σ ini→fin in length gauge is proportional
to the dipole matrix elements between the initial |ψ ini〉 and
final |ψfin〉 electronic states,32

σini→fin = 4απ2ω|〈ψini|s · d|ψfin〉|2, (19)

where α � 1/137 is the fine-structure constant, ω is the photon
energy, and s is the electric polarization vector of the electro-
magnetic wave. The elements of the transition dipole moment
d are expressed in the SCE by5

dM = c
†
i cj

√
4π

3

∑
lml′m′

∫ ∞

0
dr P i∗

lm(r)rP j

lm(r)

×
∫

d
Ylm(θ, φ)Y ∗
l′m′ (θ, φ)Y ∗

1M (θ, φ), (20)

where P i
lm(r) and P

j

l′m′ (r) represent radial parts of the respec-
tive bound and continuum electron wave functions and c

†
i , cj
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are the corresponding creation/annihilation operators, respec-
tively. Averaging over all molecular orientations, yields

σini→fin = 4

3
απ2ω

∑
M=−1,0,1

|〈ψini|dM |ψfin〉|2. (21)

The photoionization transition rate is given by

�Photo
ini→fin = σini→fin · F (t), (22)

where F(t) is the time-dependent photon flux. The total pho-
toionization cross section σ ini reads

σini =
∑
fin

σini→fin. (23)

The above summation involves different continuum solutions
(LM) as well as different electronic bound parts (|ψ̃fin〉).

C. Auger transition

The transition rate for Auger decay �
Auger
ini→fin from first-

order perturbation theory is given by

�
Auger
ini→fin = 2π |〈ψfin|H − Eini|ψini〉|2. (24)

Assuming vanishing state overlap 〈ψfin|ψ ini〉 = 0, the Auger
transition rates are given by matrix elements of the electronic
Hamiltonian,33

〈ψfin|H − Eini|ψini〉

= 〈ψfin|
⎛
⎝∑

ij

c
†
i cjhij + 1

2

∑
ijkl

c
†
i c

†
j clck〈ij |kl〉

⎞
⎠ |ψini〉.

(25)

The above two- and one-electron integrals are readily evalu-
ated in the SCE representation,

hij = δσi ,σj

∫
drφ∗

i (r)

(
−�

2
+ Vne(r)

)
φj (r)

= δσi ,σj

∫ ∞

0
dr

(∑
lm

1

2

dP i∗
lm(r)

dr

dP
j

lm(r)

dr

+
∑
lm

l′m′l′′m′′

P i∗
lm(r)vne,l′m′(r)P j

l′′m′′(r)

r

×
∫

d
Y ∗
lm(θ, φ)Yl′m′(θ, φ)Yl′′m′′ (θ, φ)

)
, (26)

and

〈ij |kl〉 := δσi ,σk
δσj ,σl

(ik|j l), (27)

(ik|j l) =
∫

d3r1

∫
d3r2 φ∗

i (r1)φk(r1)
1

r12
φ∗

j (r2)φl(r2)

=
∑
lm

l′m′l′′m′′

∫ ∞

0
dr yik

lm(r)P j∗
l′m′(r)P l

l′′m′′ (r)

×
∫

d
Y ∗
lm(θ, φ)Y ∗

l′m′(θ, φ)Yl′′m′′(θ, φ), (28)

yik
lm(r) :=

∑
l′m′
l′′m′′

∫ ∞

0
dr ′ 4πP i∗

l′m′(r)P k
l′′m′′ (r)

2l + 1

rl
<

rl+1
>

×
∫

d
Ylm(θ, φ)Y ∗
l′m′ (θ, φ)Yl′′m′′ (θ, φ). (29)

Here, σ i is the spin of spin orbital φi,σi
, r< = min(r, r′) and

r> = max(r, r′). Neglecting other relaxation effects such as
fluorescence—which is small for the light nuclei considered
here—the total lifetime τ of the initial state is given by

τ = 1/�
Auger
ini = 1/

∑
fin

�
Auger
ini→fin, (30)

where �
Auger
ini is the total transition rate of the initial state.

Again summation index “fin” describes the complete relax-
ation channel given by continuum solution (LM) and bound
part (|ψ̃fin〉).

III. COMPUTATIONAL DETAILS

A. Single center expansion

Dunning’s cc-pVTZ basis set34 was used to represent
bound molecular orbitals (MOs) in all computations. For each
ionization and Auger decay step, molecular orbitals were cal-
culated by a restricted (open shell) Hartree Fock procedure
(R(O)HF) optimized for the initial electronic state. Thus, we
calculated MOs for the neutral and double core ionized state
by RHF, respectively, and MOs for the single core ionized
state with ROHF. The self-consistent field optimization for
core ionized states was carried using a modified PSI3 quantum
package35 as described elsewhere.36 This procedure is known
to account for most of the core electron vacancy induced or-
bital relaxation effects.37

From the resulting MOs, the SCE of each orbital φi(r)
(Eq. (6)) has the radial parts

P i
lm(r) = r

∫
d
 φi(r) Y ∗

lm(θ, φ). (31)

These radial parts as well as the radial parts of their electro-
static potential and density were numerically calculated us-
ing Gaussian-Legendre integration with 20 × 20 integration
points in angle space. Because all of these quantities are real,
real valued tesseral spherical harmonics38 instead of the usual
complex valued spherical harmonics were used to reduce the
computational cost. Angular integrals over three spherical
harmonics, also known as Gaunt coefficients, are readily cal-
culated by evaluation of Wigner 3 − j symbols.39

For the radial coordinate non-equidistant radial grid
points r were used21 implicitly determined by

ρ(r) = α r + β ln r +
∑

n

arctan
r − Rn

γ
. (32)

Here Rn are the distances of atom n to the center of the ex-
pansion, and variable ρ is discretized on an equidistant grid.
The number of radial grid points was 1500, the largest radial
grid point was set to r = 20 a.u., and the center for the ex-
pansion was chosen at the position of the oxygen atom, which
allowed the SCE to limit to angular quantum numbers l ≤ 5,
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resulting in 36 different (lm) tuples. These parameters turned
out to represent the molecular orbitals and relevant continuum
wavefunctions of the water molecule sufficiently accurate and
thus have been used for all subsequent calculations.

B. Configurational mixing

We applied the frozen orbital approximation, i.e., initial
and final electronic states were represented by the same or-
bital set. In particular, orbitals optimized for the initial state
by the R(O)HF calculation mentioned above were used. The
molecular orbital integrals, obtained from the PSI3 quantum
package,35 were used to perform spin adapted multi-reference
configuration interaction (MRCI) calculations for the final
bound electronic states |ψ̃S

fin,MS
〉 and single reference con-

figuration interaction (CI) calculations40 for the initial states
|ψ̃S

ini,MS
〉. As references for the final state we have chosen the

initial state reference with all possible combinations of one
additional vacancy (for photoionization) or two valence elec-
trons removed and a re-occupied core orbital (for Auger de-
cay). From the reference occupations configuration state func-
tions (CSFs) were built considering single excitations within
the full MOs space and double excitations up to the 20th
MO. This truncation of the CI space was used for both sin-
gle and the multi-reference calculations, leading to a num-
ber of 2297–5852 CSFs for the initial states (single reference
CI) and 8125–18220 CSFs for the final state (MRCI). From
these calculations only solution vectors with significant con-
tributions in the references (norm of projection into reference
subspace >0.01) were used for subsequent calculations. For
these solution vectors the SCE of the electrostatic potential
and the electron density of the respective final electronic state
was obtained as a linear combination of the electrostatic po-
tential and electron density of the MOs.

C. Integration of the continuum wavefunction

For the relevant CI vectors, the 36 solutions for the
continuum wavefunctions in the potential of the molecule
of the specific final electronic state |ψ̃S

fin,MS
〉 were inte-

grated according to Eq. (7) for the given boundary conditions
(Eq. (17)) using the vector sweep integration method adopted
from Ref. 21. The continuum normalization was carried out
by diagonalizing the obtained R matrix as described by
Eq. (18).

D. Transitions

Photoionization cross sections and Auger decay transi-
tion rates were calculated by evaluating Eqs. (21) and (25) us-
ing Simpson’s rule. In particular, for the two electron integrals
a system of coupled differential equations21, 41 was solved for
r · yik

lm(r) and then Eq. (28) was integrated by Simpson’s rule,
as had been described for atoms.42 As different angular con-
tinuum channels were not distinguished here, transition rates
for different continuum solutions (LM) were finally summed
up.
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FIG. 1. Cuts through the potential energy surfaces for single (top) and double
core (bottom) ionized water. (Left) Both hydrogen atoms are at equilibrium
distance dOH = 0.96a0 to the oxygen for different HOH angles �. (Right)
One hydrogen atom is fixed at dOH = 0.96a0 and the other is at variable dis-
tances to the oxygen atom, while � is at equilibrium value of 103.5◦.

E. Molecular dynamics calculations

All calculations of Auger decay rates were performed for
a set of molecular geometries, obtained by ab initio molecu-
lar dynamics (MD) simulation. The nuclei were propagated
using the Beeman integration scheme43 with a 0.1 fs time
step in the single and double core ionized state. Energy gra-
dients were calculated with GAUSSIAN 09 (Ref. 44) from un-
restricted Hartree Fock (UHF) calculations for the single core
ionized state and restricted Hartree Fock (RHF) calculations
for the double core ionized state. Convergence of the self-
consistent field procedure to the desired open core shell states
was achieved by choosing an initial guess based on neutral
optimized orbitals with single or unoccupied core orbital, re-
spectively. To assess the accuracy of the (U)HF method used
to generate the trajectories, we compared two sections of the
potential energy surface obtained by the single determinant
(U)HF method with that obtained by the CI method described
in Sec. II B. As seen in Fig. 1, very similar curves are ob-
tained, apart from a nearly constant offset. Therefore, we con-
sider the gradients at (U)HF level to be sufficiently accurate
to describe the nuclear dynamics after core ionizations.

F. Initial conditions

The Auger spectrum of water is dominated by Franck-
Condon broadening due to the very steep potential energy sur-
faces of the final electronic states. To estimate this broadening
(as described further below), multiple MD trajectories were
calculated with initial conditions at the 1σ standard deviation
of the ground state Wigner distribution. To that aim, neutral
ground state optimization and vibrational mode calculations40

using harmonic approximation were performed with
GAUSSIAN 09 (Ref. 44) on the MP2 level. From the opti-
mized ground state geometry six different initial conditions
with zero velocities were generated by varying the geometry
in positive and negative directions along each of the three
normal modes by the standard deviation σ of the vibrational
ground state distribution. Six further initial conditions were
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generated from the optimized geometry with initial velocities
in positive and negative directions along the vibrational
normal modes. These velocities were chosen to match the
standard deviation σ of the vibrational ground state velocity
distribution. Together with the optimized geometry with zero
velocity, a total set of 13 sets of initial conditions were thus
obtained.

G. Spectrum

For each of the 13 initial conditions, molecular dynam-
ics simulations in the single core ionized state were started.
Rather than estimating the Franck Condon broadening of the
Auger lines from a weighted average over many Wigner-
distributed trajectories (which would require a considerable
number of trajectories to achieve sufficient sampling), the
variance of the assumed Gaussian line profile of the dominant
Auger transitions was estimated from the differences �ε(t) in
the Auger transition energies between the “central” trajectory
(started from the optimized geometry with zero initial veloc-
ities) and the 12 “satellite” trajectories (started from altered
initial conditions) as

σ 2(t) = σ 2
exp + σ 2

lifetime +
3∑

i=1

�ε2
i,+x(t) + �ε2

i,−x(t)

2

+�ε2
i,+v(t) + �ε2

i,−v(t)

2
. (33)

This computationally more efficient estimate rests on the
assumption that the Gaussian shape of the nuclei wave packet
is approximately maintained during the short simulation time.
More precisely, we assume that the peak of the wave-packet
remains sufficiently close to the “central” trajectory, and the
“satellite” trajectories remain on average sufficiently close
to the surrounding 1σ hypersurface, such that the width of
the wave packet can be estimated from their average dis-
tance to the “central” trajectory. Additionally, we assume that
within the phase space region covered by the wave packet, the
transition energy is sufficiently linear in the atomic coordi-
nates and the individual transition rates are constant. Visual
inspection of the trajectories showed that these conditions
are satisfied. This allowed us to restrict the computation of
Auger transition rates to the “central” trajectory, while for the
“satellite” trajectories only transition energies needed to be
calculated.

In Eq. (33) �εi,±x(t) denotes the difference of the tran-
sition energy between the “central” and the “satellite” trajec-
tory, started with geometries modified along the vibrational
mode i. Similarly, �εi,±v(t) denotes the difference of the tran-
sition energy between the “central” and the “satellite” trajec-
tory, started with velocities modified along vibrational mode
i. Additionally, the effect due to limited experimental reso-
lution and due to line broadening was included, with σ exp

= 0.17 eV (0.4 eV FWHM (Ref. 45)), and σ lifetime estimated
from the decay rates calculated in Sec. IV B.

To follow the evolution of double core ionized water af-
ter a period of nuclear dynamics in the single core ionized
state, additional simulations of the double core ionized state

neutral

single core

double core

time

vibrational
groundstate
distribution

time dependent
photon flux F (t)

τ1

τ2
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t2

t

Auger photoionization

FIG. 2. Illustration of different ionization pathways. The total Auger spec-
trum is obtained from a superposition of spectra resulting from different tra-
jectories along the neutral, single core ionized, and double core ionized states.
Here, as an example, 4 pathways contributing to the single and the double
core Auger spectrum are illustrated.

were started from selected snapshots of the single core ionized
state trajectories (“central” and “satellite”) at 0, 1, . . . 9 fs, thus
resulting in a total of 130 double core trajectories. The sim-
ulation time for each of the concatenated single and double
core trajectories was limited to 10 fs, and the simulation time
in the double core ionized state was limited to 7 fs.

Figure 2 illustrates how the spectra were composed of
different trajectories using different pathways through the sin-
gle and double core ionized states. The accumulated single
and double core hole Auger spectra, S1 and S2, were calcu-
lated considering all possible pathways by

S1 =
∫ ∞

−∞
dt

∫ t

−∞
dt1 p1(t, t1) s1(t − t1), (34)

S2 =
∫ ∞

−∞
dt

∫ t

−∞
dt2

∫ t2

−∞
dt1 p2(t, t1, t2) s2(t − t1, t − t1 − t2),

(35)

where s1(τ 1) is the time-dependent single core Auger spec-
trum obtained as instantaneous spectrum from the geometry
resulting from propagating nuclei in the single core ionized
state for a time interval τ 1. Similarly, s2(τ 1, τ 2) denotes the
instantaneous double core Auger spectrum resulting after a
time interval τ 1 of nuclear dynamics in the single core ion-
ized state and subsequent nuclear dynamics in the double core
ionized state for an interval τ 2. The instantaneous single core
Auger spectra s1(τ 1) were weighted here with the joint prob-
ability p1(t, t1) dt1 of finding the molecule at time t in the
single core ionized state after ionization at time t1. Similarly
the double core Auger spectra s2(τ 1, τ 2) were weighted with
the joint probability p2(t, t1, t2) dt1dt2 of finding the molecule
in double core ionized state given that the first and second
ionizations have occurred at times t1 and t2, respectively.

The joint probability densities p1(t, t1) and p2(t, t1, t2)
are expressed in terms of conditional probabilities p1(t|t1) and
p2(t|t1, t2) by

p1(t, t1) = p1(t |t1) p0(t1)σ0→1F (t1), (36)

p2(t, t1, t2) = p2(t |t1, t2) p1(t2, t1)σ1→2F (t2), (37)

where p0(t) is the probability of the neutral electronic state
at time t, F(t) is the photon flux, and σ i→j are the partial

Downloaded 28 May 2013 to 134.76.223.9. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

3 Results

70



144304-7 Inhester et al. J. Chem. Phys. 136, 144304 (2012)

photoionization cross sections. Here the indices 0, 1, and 2
denote the neutral, single core ionized, and double core ion-
ized states, respectively. The conditional probabilities were
obtained from the numerical solution of the master equations

dp0(t)

dt
= −p0(t)σ0F (t); p0(t → −∞) = 1, (38)

dp1(t |t1)

dt
= −p1(t |t1)

(
�

Auger
1 + σ1F (t)

)
; p1(t1|t1) = 1,

(39)

dp2(t |t1, t2)

dt
= −p2(t, |t1, t2)�Auger

2 ; p2(t2, |t1, t2) = 1.

(40)

Here we neglected any geometry (i.e., time) dependence of
the total Auger decay rates �

Auger
1 and �

Auger
2 as well as of the

respective photoionization cross sections σ i→j, because they
all were found to vary by less than 2% for all obtained geome-
tries. To gain more insight in the ionization process, also the
total populations of the single and double core ionized state
at time t were considered, given by

N1(t) =
∫ t

−∞
dt1 p1(t, t1) (41)

N2(t) =
∫ t

−∞
dt2

∫ t2

−∞
dt1 p2(t, t1, t2). (42)

H. Illumination conditions

We assumed a Gaussian x-ray pulse with 10 fs FWHM.
Soft x-ray photon beams at photon energies of 1 keV were
considered, with peak intensities of 10 photons/fs Å2 �̂ 1.6
× 1016 W/cm2, 100 photons/fs Å2 �̂ 1.6 × 1017 W/cm2, and
1000 photons/fs Å2 �̂ 1.6 × 1018 W/cm2, respectively. These
parameters agree with the regime offered by the Atomic,
Molecular and Optical science instrument at the LCLS
(Ref. 46) and provide a high ionization rate such that a con-
siderable amount of double core ionizations is reached.

For visible light one might argue that such high fluxes
give rise to instantaneous multi-photon ionization or tunnel
ionization events. These effects are relevant if the pondero-
motive energy Up = 8π

137
I

4ω2 exceeds the ionization energy.
However, for the x-ray pulses considered here, Up ≤ 0.14 eV,
which is far below the ionization energy. Despite the high in-
tensities, these effects can therefore assumed to be negligible,
and thus the perturbative approach of sequential photoioniza-
tion is justified.

IV. RESULTS AND DISCUSSION

A. Photoionization cross sections

We first tested our approach by comparing calculated to-
tal photoionization cross sections for neon with values from
McMasters compilation of x-ray cross sections47 for selected

TABLE I. Calculated total photoionization cross sections for atomic neon
compared to values from Ref. 47.

Photon This work From McMaster et al. 47

energy in 10−3 in 10−3

(keV) a.u. a.u.

1 9.63 9.10
2 1.53 1.51
10 0.0137 0.0137

photon energies. As shown in Table I, our calculated ion-
ization cross sections agree well with the tabulated values.
Table II lists the obtained total and partial cross sections of
water for a photon energy of ω = 1 keV. For water, the ratio
of the partial cross sections to the single core ionized state to
the total cross section σ 0→1/σ 0 is about 80%. The remaining
20% mostly involve core ionization with additional shake-up
transitions of valence electrons. A similar ratio is seen for the
second ionization step.

B. Auger decay rates

To also validate Auger decay rate calculations, we com-
pared in Table III calculations for neon with calculations
from Kolorenč and Averbukh,48 Bhalla et al.,49 Yarzhemsky
and Sgamellotti50 (single core), Kelly51 (single core), Pelicon
et al.52 (double core), and Chen53 (double core). The values
reported in these studies vary by about 10% for the single core
and by up to 20% for the double core Auger transition. As can
be seen in Table III, our values fall within these ranges.

Table IV compares the calculated single core Auger tran-
sition rates for water with previous calculations of absolute15

and relative values.26 We have adjusted the calculated ener-
gies to the experimental spectrum (see Fig. 5) by subtracting
an overall offset of 1.1 eV. This offset may result from ne-
glecting relativistic effects in our calculation, truncation of the
CI space, or incomplete basis sets.

As can be seen, the relative rates (normalized to the dom-
inant 1b−2

1 S peak) compare well in the higher energy regime,
where final states consist of two outer valence holes. In the
lower energy range, somewhat larger deviations are seen,
which can be explained by the stronger influence of shake-up
contributions. Notably, our values tend to be larger than the
Auger decay rates obtained by Stieltjes imaging calculations
by Carravetta and Ågren15 and Kolorenč and Averbukh,48

with a total transition rate of 6.0 × 10−3 a.u. compared to

TABLE II. Calculated total and partial photoionization cross sections for
water at 1 keV. The indices 0, 1, and 2 denote the neutral, single core ionized,
and double core ionized state, respectively.

Cross section in 10−3

Transition a.u.

σ 0 3.84
σ 0→1 3.08
σ 1 2.62
σ 1→2 2.17

Downloaded 28 May 2013 to 134.76.223.9. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

3 Results

71



144304-8 Inhester et al. J. Chem. Phys. 136, 144304 (2012)

TABLE III. Comparison of calculated Auger decay rates for singly and dou-
bly core ionized neon in 10−3 a.u.

Total single core Auger decay rate in 10−3 a.u.
Kolorenč Yarzhemsky

This work and Averbukh48 and Sgamellotti50 Kelly51 Bhalla et al.49

9.9 9.2 8.9 8.1 8.8

Total double core Auger decay rate in 10−3 a.u.
Kolorenč

This work and Averbukh48 Pelicon et al.52 Chen53 Bhalla et al.49

26.1 18.6 22.9 29.5 26.0

5.5 × 10−3 a.u. (Ref. 15) and 5.4 × 10−3 a.u. (Ref. 48). How-
ever, our value for the total Auger decay rate is similar to the
single core hole decay rate measured by Sankari et al.,54 5.8
± 0.2 × 10−3 a.u.

Table V shows transition rates obtained for the double
core Auger spectrum of water. As for the single core Auger
transitions, energies have been shifted by 1.1 eV. We note,
however, that relativistic contributions not taken into account
in our calculations may contribute about �1–2 eV more in the
double than in the single core hole case.55 The obtained total
double core decay rate (18.2 × 10−3 a.u.) is about three times
larger than the single core decay rate. It is also significantly
larger than the value reported by Kolorenč and Averbukh48

who used Stieltjes imaging method (11.4 × 10−3 a.u.). These
authors48 estimated their value to be 20% too low due to in-
sufficient inclusion of initial state orbital relaxation effects.
This estimation was based on the discrepancy between their
results and other calculations for atomic neon (see Table III).
Whereas Kolorenč and Averbukh48 used neutral state opti-

TABLE V. Total �
Auger
2 and partial �

Auger
2→f Auger transition rates of water

(double core) for the main transition channels (MP2 optimized equilibrium
geometry).

Channel Energy in eV �
Auger
ini→fin in 10−4 a.u.

1b−2
1 556.13 24.70

3a−1
1 1b−1

1 555.31 23.89
1b−1

2 1b−1
1 552.81 18.18

3a−2
1 552.35 19.11

3a−1
1 1b−1

2 551.27 13.91
1b−2

2 546.79 15.58
2a−1

1 1b−1
1 532.02 13.42

2a−1
1 3a−1

1 531.53 13.78
2a−1

1 1b−1
2 527.35 9.37

2a−2
1 513.27 7.65

�
Auger
2 182.3

mized orbitals and cover orbital relaxation effects in initial
and final states with the ADC(2)x (Ref. 56) method, our cal-
culation is based on initial state optimized orbitals and incor-
porates final state orbital relaxation by configurational inter-
action. We therefore assume that our calculation does not suf-
fer from these problems.

C. Population

Figure 3 shows the populations of the neutral, single, and
double core ionized states obtained from Eqs. (41) and (42)
for different beam intensities. The decrease rate of the neu-
tral population increases with pulse intensity, whereas the
transition rate to single and double core ionized populations

TABLE IV. Total �
Auger
1 and partial �

Auger
1→fin Auger transition rates of water (single core) for the main transi-

tion channels (MP2 optimized geometry) compared to calculations from Carravetta and Ågren 15 and Siegbahn
et al.26

Energy in eV �
Auger
ini→fin in 10−4 a.u. Relative �

Auger
ini→fin

Channel This work This work From Ref. 15 This work From Ref. 15 From Ref. 26

3a−1
1 1b−1

1 T 500.67 0.26 0.11 3 2 2

1b−2
1 S 499.39 8.25 5.79 100 100 100

3a−1
1 1b−1

2 S 497.98 7.59 5.57 92 96 99

1b−1
2 1b−1

1 T 496.60 0.00 0.00 0 0 0

1b−1
2 1b−1

1 S 494.68 6.57 5.33 80 92 74

3a−2
1 S 494.64 5.74 3.93 70 68 71

3a−1
1 1b−1

2 T 494.63 0.20 0.09 2 2 1

3a−1
1 1b−1

2 S 492.36 5.62 5.57 68 96 58

1b−2
2 S 487.45 4.55 3.45 55 60 34

2a−1
1 1b−1

1 T 482.30 2.03 1.19 25 21 14

2a−1
1 3a−1

1 T 480.58 1.78 1.66 22 29 11

2a−1
1 1b−1

2 T 476.82 1.02 1.19 12 21 8

2a−1
1 1b−1

1 S 475.76 3.19 3.35 39 58 55

2a−1
1 3a−1

1 S 473.27 3.86 3.74 47 65 48

2a−1
1 1b−1

2 S 468.75 2.18 2.58 26 45 32

2a−2
1 S 457.19 1.51 3.54 18 61 48

�
Auger
1 60.01 55.20
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FIG. 3. Integrated population of the neutral N0(t), single core ionized N1(t),
and double core ionized states N2(t). A Gaussian shaped x-ray pulse centered
at time t = 0 fs, width of 10 fs FWHM and a photon energy of 1 keV was
assumed.

increase, such that their peak positions are shifted to earlier
times.

As can be seen in Table VI, the probability for double
core ionization is about 100 times smaller than for single core
ionization at 1.6 × 1016 W/cm2, and reaches a ratio of 0.465 at
1.6 × 1018 W/cm2. At 1.6 × 1018 W/cm2 the first ionization
step is saturated, and the probability of first core ionization
agrees with the ratio σ 0→1/σ 0 = 0.802. Note that the miss-
ing 20% from shake-up contributions and valence ionizations
are not considered here and thus are missing in our simula-
tions. After Auger decay the molecule may undergo further
core ionizations, as has been observed for Neon.10 Note that
these further ionization steps, which involve a large number
of different channels, are not included in our simulation.

D. Single and double core ionized Auger spectra

Figure 4 illustrates trajectories starting from zero veloc-
ities and equilibrium geometry by snapshots of the electron
densities in the molecular plane, calculated from the CI wave-
functions. The evolution of the OH bond length is shown in
the upper left panel, that of the HOH bond angle in the supple-
mentary material.40 As can be seen, in the single core ionized
state the nuclei motion is mainly a bending motion, whereas
in the double core ionized state protons are rapidly expelled
from the molecule within a few femtoseconds. During that
process, and with further ionization, the electron density be-
comes increasingly isotropic.

TABLE VI. Total probability of single and double core ionization for dif-
ferent flux intensities.

Intensity (W/cm2) 1st core ionization 2nd core ionization Ratio 2nd/1st

1.6 × 1016 0.087 0.001 0.01
1.6 × 1017 0.546 0.069 0.13
1.6 × 1018 0.802 0.373 0.465
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FIG. 4. Dynamics of a water molecule after single (middle row) and double
(bottom row) core ionization. The upper left plot shows the evolution of the
OH-bond length dOH for the single and double core ionized state. The other
plots show cuts through the electron density in the molecular plane (contour
lines) at three selected times for the neutral, single core ionized, and double
core ionized state. Crosses denote the positions of the nuclei; triangles mark
the neutral equilibrium positions of the nuclei. All plots refer to the trajectory
starting from equilibrium geometry with zero initial velocities.

Figure 5 compares the calculated single core spectrum
at peak intensity 1.6 × 1016 W/cm2 with the spectrum mea-
sured by Moddeman et al.45 Also shown for comparison are
the calculated spectra obtained with frozen nuclei. As can be
seen, the calculated spectrum captures most of the features of
the experimental spectrum very well. Only small deviations
to the spectrum with frozen nuclei are observed. Obviously,
for single core ionization the influence of the nuclear motion
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FIG. 5. Single core Auger spectrum. Comparison of experimental
spectrum45 (dashed line) and calculated spectrum for peak intensity I = 1.6
× 1016 W/cm2 with (red line) and without (green line) nuclei dynamics. The
position of the peaks were labeled according to their dominant hole configu-
rations.
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FIG. 6. (Left) Instantaneous single core Auger spectra after 0 fs, 2 fs, and
4 fs of the single core ionized state. (Right) Instantaneous double core Auger
spectra after 0 fs, 1 fs, and 2 fs of the double core ionized state. For the double
core Auger spectrum, nuclear motion was calculated only for the double core
ionized state. The fast dissociation in the double core ionized state is reflected
by the fast shift of the Auger spectrum to higher energies.

in the Auger spectrum is rather small, which can also be seen
in Fig. 6 (left), where a set of instantaneous Auger spectra
of selected snapshots of the single core ionized state trajecto-
ries are shown. Indeed, for different times these Auger spec-
tra are very similar, with the notable exception at about 485–
495 eV, where final states are associated with vacancies in
outer valence orbitals 1b2 and 3a1, which are mostly af-
fected by the hydrogen bending movement and thus sensitive
to small geometry changes. The valence orbital 1b1 is only
weakly affected by geometry changes as its nodal plane is
identical with the molecular plane.

Figure 7 shows the calculated double core spectrum at
peak intensity 1.6 × 1018 W/cm2 and the calculated spec-
trum with frozen nuclei. Here the nuclear dynamics causes
a long tail to higher energies for each peak in the spectrum.
The instantaneous spectra at different time steps (Fig. 6, right)
confirm that the spectra indeed shift to higher energies as the
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FIG. 7. Double core Auger spectrum. Calculated spectrum for peak intensity
I = 1.6 × 1018 W/cm2 with (red line) and without (green line) nuclei dynam-
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double core ionized state evolves. This is a result of the strong
dissociative motion in the double core ionized state (see
Fig. 4, bottom). As both protons are repelled, positive charge
is removed from the molecule. As a result, the subsequent
Auger recombination involves larger energy differences.

The combined single and double core Auger spectra,
composed according to Eqs. (34) and (35), are shown in
Fig. 8 for the same flux parameters as in Fig. 3. For 1.6
× 1016 W/cm2 the single core Auger spectrum clearly domi-
nates, while at 1.6 × 1017 W/cm2 the double core spectrum
has already significant contribution. At peak intensity 1.6
× 1018 W/cm2, the double core and single core spectra reach
the same intensity. Here, about 50% of the population is dou-
ble core ionized, such that the single core Auger spectrum
becomes even smaller than for 1.6 × 1017 W/cm2.

V. CONCLUSION

We have developed a procedure for calculating ab initio
transition rates for photoionization and molecular Auger de-
cay, which was validated against previous calculations and ex-
perimental data for neon. Our test calculations demonstrates
that the single center expansion method in combination with
LCAO for the bound MOs provides reliable cross sections and
transition rates for water. It was demonstrated that for describ-
ing ionization dynamics the second core ionization process
must be considered for intensities above 1017 W/cm2.

Auger spectra were computed for a single and dou-
ble core ionized water molecule. For these calculations,
the nuclear dynamics during the core hole lifetime were
described by an MD approach based on the core ion-
ized UHF/RHF wavefunction. The obtained total Auger de-
cay rates as well as the spectra agree well with previ-
ous experimental data. Strikingly, the Auger decay rate of
double core ionized water turned out to be three times
larger than that of single core ionized water. Only small
effects of the nuclear motion on the single core Auger
spectrum were seen. In contrast, for the double core ion-
ized water molecule fast dissociation dynamics is seen, which
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strongly affects the respective Auger spectra. A particular sig-
nature of nuclear motion, which should be seen in future FEL
experiments, are marked tails at the higher energy side of most
peaks. This signature, therefore, might provide an indepen-
dent probe for detecting fast nuclear motion on femtosecond
time scales. Future work should address possible vibrational
interference effects for the nuclear motion, which in our inco-
herent accumulation of spectra have been neglected. Although
only small interference effects are expected for the single core
hole Auger spectrum of the water monomer, more pronounced
fingerprints might be visible in the double core hole Auger
spectrum, and in particular in the spectra of the water dimer as
has been demonstrated for the x-ray emission spectrum.57, 58

ACKNOWLEDGMENTS

This work has been supported by the DFG, Grant No.
SFB 755.

1R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Po-
tential for biomolecular imaging with femtosecond X-ray pulses,” Nature
(London) 406, 752 (2000).

2K. J. Gaffney and H. N. Chapman, “Imaging atomic structure and dynamics
with ultrafast X-ray scattering,” Science 316, 1444 (2007).

3M. Makris, P. Lambropoulos, and A. Mihelič, “Theory of multiphoton mul-
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48P. Kolorenč and V. Averbukh, “K-shell Auger lifetime variation in dou-
bly ionized Ne and first row hydrides,” J. Chem. Phys. 135, 134314
(2011).

49C. P. Bhalla, N. O. Folland, and M. A. Hein, “Theoretical K-shell Auger
rates, transition energies, and fluorescence yields for multiply ionized
neon,” Phys. Rev. A 8, 649 (1973).

50V. Yarzhemsky and A. Sgamellotti, “Auger rates of second-row atoms cal-
culated by many-body perturbation theory,” J. Electron Spectrosc. Relat.
Phenom. 125, 13 (2002).

51H. P. Kelly, “K Auger rates calculated for Ne+,” Phys. Rev. A. 11, 556
(1975).
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3 Results

3.3 Double core hole decay and core hole screening in first
row hydrides

3.3.1 Introduction

Inspired by the findings of the previous article, we subsequently investigated the decay
rate of single and double K holes for a series of molecules, the first-row hydrides. The en-
hancement of the decay rate of double K-holes turned out to be a systematic effect occur-
ring in all studied molecules. We discuss possible reasons for this enhancement and relate
it to the molecular core hole screening effect. In essence, these screening effect consists of
a valence electron transfer from the outer parts of the molecule towards the nucleus, on
which the core hole is located due to the uncompensated nucleus charge. This screening
effect can also be determined from simple population analysis, which allows estimating
the core hole decay rate from simpler quantum chemical procedures. The resulting article
was published in the Journal of Chemical Physics.

Individual contributions of the authors

I performed the calculations, the analysis of the results, and drafted the manuscript.
G. Groenhof and H. Grubmüller helped to develop the relation of the total Auger decay
rate to the electron population and supervised the project. They both contributed to
the manuscript.
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Because of the high intensity, X-ray free electron lasers allow one to create and probe double core
ionized states in molecules. The decay of these multiple core ionized states crucially determines the
evolution of radiation damage in single molecule diffractive imaging experiments. Here we have
studied the Auger decay in hydrides of first row elements after single and double core ionization by
quantum mechanical ab initio calculations. In our approach the continuum wave function of the emit-
ted Auger electron is expanded into spherical harmonics on a radial grid. The obtained decay rates of
double K-shell vacancies were found to be systematically larger than those for the respective single
K-shell vacancies, markedly exceeding the expected factor of two. This enhancement is attributed to
the screening effects induced by the core hole. We propose a simple model, which is able to predict
core hole decay rates in molecules with low Z elements based on the electron density in the vicinity
of the core hole. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4801660]

I. INTRODUCTION

In ultra short X-ray pulse coherent diffractive imaging
experiments with single macromolecules, Auger decay and
ionization are the primary processes that lead to radiation
damage and, ultimately to Coulomb explosion.1, 2 At the pho-
ton energies required for such experiments, photo ionization
of core electrons is the dominant ionization process. For el-
ements with a low atomic number Z, core ionization induces
Auger decay, during which a valence electron refills the core,
while a second valence electron is emitted. Thereby, the sam-
ple is charged up in sequences of photo ionization and Auger
decay events, which eventually leads to a Coulomb explosion.
To determine how this structure disintegration proceeds and
whether it is possible to collect sufficient scattered photons
of the unperturbed structure, knowledge of molecular Auger
decay rates is essential.

At the high intensities required for single molecule
diffractive imaging, the ionization rates become comparable
to Auger decay rates and therefore electronic states with dou-
ble vacancies in the K shell become relevant. Further, these
states have a much smaller ionization cross section and thus
can effectively suppress the formation of high charge states at
short pulse durations — a phenomenon known as “frustrated
absorption.”3, 4 For these reasons, the lifetimes of the inter-
mediate single and double K-shell vacant states determine the
competition of scattering and destruction of the sample.

The investigation of multiple core hole states has re-
cently received attention also because multiple core hole
spectroscopy opens up a way to sensitively probe electronic
structure.5–8 The Auger process in double core hole states
in molecules of low Z elements, such as N, C, O has been

a)linhest@gwdg.de

studied in a series of theoretical9–11 and experimental10, 12

studies. However, to our knowledge only few attempts have
been made to study the decay rate of doubly K-shell ionized
states in molecules or atoms. Because in these states there
are twice the number of decay channels available compared
to the single core ionized case, one may be tempted to as-
sume that the decay rate is simply twice the single core hole
decay rate. Indeed, a recent calculation11 of the double core
hole decay (KK-KLL) of a series of small molecules seems
to support such doubled rate, albeit this calculation may not
have covered relevant relaxation effects sufficiently, and thus
the authors estimated that the true value might be about 20%
larger.11 For atoms, Chen13 calculated double K-hole vacancy
Auger rates (KK-KLL) for atomic numbers Z = 10. . . 36 and
found that for lower Z elements the Auger decay rate of dou-
ble core shell vacancies was significantly larger than twice
the Auger decay rate for the single core shell vacancy case.
For the water molecule, we have recently calculated an even
larger rate increase by a factor of three.14

A possible explanation for this pronounced rate increase
over single core hole Auger decay are electronic relaxation ef-
fects. In particular, a single or double core hole in an atom or
molecule induces relaxation of the surrounding electron den-
sity, such that the remaining electrons tend to screen the core
hole. It can be anticipated that the valence electron density is
deformed more dramatically in case of a double core vacancy,
compared to that in the presence of a single core hole.

For atoms the additional contraction of electronic shells
in a double core hole vacancy state results in an increased
decay rate.13, 15 In molecules, additionally, the shift of va-
lence electrons from neighboring atoms towards the core
hole needs to be considered.16 As we will show, this ef-
fect further increases the decay rates of double core ionized
states.

0021-9606/2013/138(16)/164304/5/$30.00 © 2013 AIP Publishing LLC138, 164304-1
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To systematically investigate such effects in small
molecules, we have computed the Auger decay rates of
a series of single and double core ionized molecules via
ab initio quantum chemical methods and analyzed the re-
spective electron density. We have chosen a sequence of iso-
electronic molecules, namely, the neutral first-row hydrides
methane CH4, ammonia NH3, water H2O, and hydrogen-
fluoride HF, as well as their singly charged protonated states,
CH+

3 , OH−, H3O+, NH+
4 , NH−

2 , F−, and H2F+. All of these
molecules have ten electrons, so that any variation of de-
cay rates can be attributed solely to their different electronic
structure.

II. METHODS

A. Theory

As described in detail before14 Auger decay rates were
calculated using a single center expansion of the electronic
wave functions.17 The bound part of the molecular states
was calculated from Configuration Interaction (CI) calcula-
tions, while the continuum part was determined by solving
the Schrödinger equation in the potential generated by the
left-behind molecular cation. To this end, the molecular wave
function was expanded into spherical harmonics on a radial
grid. Accordingly, the molecular orbitals and single electron
continuum wave function are given by

φi,σ (r) =
∑
lm

P i
lm(r)

r
Ylm(θ, φ), (1)

where Ylm(θ , φ) are spherical harmonics and P i
lm(r) ra-

dial parts of the expansion. The exchange interaction of the
bound electrons with the continuum electron was approx-
imated here by the KSG18 exchange interaction potential
functional

VXC[ρ(r)] = −
(

3

π
ρ(r)

) 1
3

(2)

of the bound molecular electron density ρ(r). From the de-
termined continuum solutions, first order transition rates for
Auger decay,

�
Auger
ini→fin = 2π |〈ψfin|H − Eini|ψini〉|2, (3)

were calculated for all relevant final states, including all avail-
able continuum channels. Under the assumption that the flu-
orescence decay channel can be neglected, these rates were
finally summed up to obtain the total decay rate.

B. Computational details

All molecular geometries used here were obtained by
geometry optimization for the electronic ground state us-
ing GAUSSIAN 0919 at the MP2/cc-pVTZ level of theory.20

For both, initial and final electronic states, CI calculation
were based on molecular orbitals (MOs), which were ob-
tained from a restricted (open shell) Hartree-Fock calcula-
tion for the respective initial single or double core ionized
electronic states using Dunning’s cc-pVTZ basis set.21 The

Hartree-Fock calculations and the transformation of two elec-
tron integrals were performed using a modified PSI3 quantum
package.22

For the CI calculation we used a slightly different trunca-
tion scheme than that in Ref. 14. In particular we included all
singly and doubly excited configurations from the respective
reference(s). For the initial state, which is the singly or doubly
core ionized state, we used a single reference, with a singly or
doubly occupied core shell. For the final states of the Auger
decay of a single core hole, we used multiple references with
all possible combinations of rearranged two valence holes and
refilled core shell. For the final states of the Auger decay of
a double core hole, the same references were used but with a
single occupied core shell. For all core vacant states, i.e., ini-
tial states and final states of the double core hole decay, single
and double excited configurations were restricted by requir-
ing the core orbital either singly or doubly occupied. This ap-
proach served to avoid any refilling of the core hole due to
the pseudo continuum formed by the higher energetic valence
orbitals.

We note that our rates for neon and water are slightly
smaller (by ≤10%) than those we have reported previously.14

This difference is explained by the smaller CI space used
in Ref. 14, in which double excitations were limited up to
a certain Hartree-Fock orbital eigenvalue. The CI truncation
scheme used in the present work allows a higher flexibility of
the wave function and therefore improved the description of
the final states based on MOs optimized for the initial core
ionized state.

The computational parameters for the single center ex-
pansion were chosen as in Ref. 14. For the linear molecules
HF, OH− and atoms Ne, F−, the number of m quantum num-
bers was reduced by exploiting molecular symmetries.

III. RESULTS AND DISCUSSION

To validate our method, we first calculated molecular
K-LL Auger decay rates for which calculated11, 13, 15, 16 or
measured23–25 values are available. As can be seen in Table I,
the single core (K-LL) Auger decay rates we obtained agree
with those obtained by Kolorenč and Averbukh11 within
4%. For methane and water decay rates, which have been
measured via the linewidth, also agree within 12% with our

TABLE I. Calculated K-LL Auger decay rates �K in 10−3 a.u.a compared
with literature values.

Theory

This work Ref. 16 Ref. 11 Experiment

CH4 3.2 3.5 3.1 3.4–3.5b 3.1 ± 0.4c

NH3 4.3 5.2 4.5
H2O 5.6 6.8 5.4 5.8 ± 0.2d

HF 7.3 8.3

a1 a.u. = 4.13 × 10161/s.
bFrom Ref. 23.
cFrom Ref. 24.
dFrom Ref. 25.
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TABLE II. Calculated KK-KLL Auger decay rates �KK in 10−3 a.u. for
neon compared with previous calculations.

This work Ref. 15 Ref. 13

�K 9.2 8.8 10.3
�KK 25.8 26.0 29.5
�KK/(2�K) 1.4 1.5 1.4

results. Although the values calculated by Larkins16 are sys-
tematically larger by about 15% than ours, the relative rate
differences within the considered series of molecules also
agree well with our results.

Table II compares the calculated single and double core
hole Auger decay rates for neon with those calculated by
Bhalla et al.15 and Chen.13 Again, the values we obtained
agree within 13% to their calculations. Notably, for all double
core hole decay calculations of neon, a marked enhancement
�KK/(2�K) of about 1.4–1.5 is seen. From this comparisons
we conclude that our approach yields sufficiently accurate re-
sults to quantitatively analyze the systematic trends discussed
further below.

As the main result, we have calculated single (K-LL) and
double (KK-KLL) core hole decay rates for the above iso-
electronic series of molecules (Table III). As can be seen, with
increasing atomic number Z of the central atom, the decay rate
increases both for single and for double core ionized states. In
contrast, the protonation state of the molecule seems to have
only a minor effect on both single and double core hole decay
rates. Overall, and in line with the results that have been ob-
tained for atoms,13, 15 all molecular double core hole decays
�KK per core hole (i.e., divided by two) are markedly faster
than that of the single core hole �K.

Remarkably, for double core ionized states, the rela-
tive increase of the decay rate with Z appears to be slightly
smaller. In fact, the ratio of double to single core hole de-
cay rate per core hole, �KK/(2�K), decreases monotonically
with increasing Z, from about �KK/(2�K) = 1.8 for methane
to about �KK/(2�K) = 1.4 for neon. Thus, not only the above
systematic rate enhancement resembles the trend observed13

for atoms with atomic number Z = 10. . . 36, but also its sys-
tematic variation of the rate with Z.

We therefore asked whether and how this trend can be
explained in terms of electronic structure changes due to the
core hole, both as a function of Z as well as the number of hy-
drogen atoms. Specifically, we will analyze valence electron
density shifts from the peripheral hydrogen atoms towards
the central atom. To this aim, we will introduce a simplified
model that relates the decay rates �K and �KK to the valence
electron population on the central atom, applying a series of
approximation steps.

Neglecting correlation effects, we first assume that the
dominant contribution to an individual Auger transition rate
results from a single pair of initial and final configuration
state functions (CSF), both described by the same set of MOs.
The amplitude for the Auger process from a CSF with sin-
gle 1s core hole to a final CSF with vacancies in the valence
MOs v and v′ with either singlet or triplet spin symmetry is

TABLE III. Auger decay rates in 10−3 a.u. for single core ionized (�K) and
double core ionized (�KK) molecules.

Z �K
�KK

2
�KK
2�K

CH4 6 3.2 5.8 1.8
CH−

3 6 3.0 5.4 1.8

NH+
4 7 4.3 8.1 1.9

NH3 7 4.3 7.2 1.7
NH−

2 7 4.1 6.9 1.7

H3O+ 8 5.6 9.0 1.6
H2O 8 5.6 8.8 1.6
OH− 8 5.6 8.9 1.6

H2F+ 9 7.2 10.8 1.5
HF 9 7.3 10.9 1.5
F− 9 7.4 11.0 1.5

Ne 10 9.2 12.9 1.4

expressed by26

Mvv′√
2π

=

⎧⎪⎪⎨
⎪⎪⎩

〈1sk|1/r|vv〉 for v = v′ , singlet
1√
2
(〈1sk|1/r|vv′〉+〈1sk|1/r|v′v〉) for v �= v′ , singlet

1√
2
(〈1sk|1/r|vv′〉−〈1sk|1/r|v′v〉) for v �= v′ , triplet .

(4)

The above two-electron integrals are defined as

〈1sk|1/r|vv′〉 :=
∫

d3r1

∫
d3r2φ1s(r1)φv(r1)

× 1

|r1 − r2|φk(r2)φv′(r2), (5)

where φ1s(r) denotes the core orbital, φk(r) the continuum
wave function; φv(r) and φv′(r) are valence orbitals. The KK-
KLL Auger decay rate of double K hole states is given by
a similar expression, except that the final states have doublet
spin symmetry, resulting in an additional factor of two for the
rates.

Due to the strong localization of the hole φ1s, we further
assume that the two-electron integrals in Eq. (4) are domi-
nated by those parts of the valence electron wave functions
φv(r) and φv′(r) which are close to the core hole φ1s,27, 28

whereas the contribution of the remaining part of these or-
bitals to Mvv′ is assumed to be small.

With the above assumptions, and following Refs. 29–32,
we approximate each molecular Auger transition rate by

Ivv′ = |Mvv′ |2 	
∑
aa′

C2
vaC

2
va′Aaa′ . (6)

Here, Aaa′ is an atomic Auger rate for a final state with vacan-
cies in the atomic orbitals a and a′, with populations C2

va and
C2

v′a′ in the molecular orbitals v and v′, respectively. Further,
we assume that the atomic Auger rates Aaa′ are independent
of Z; indeed, calculated Auger radial matrix elements33, 34 for
atoms with 6 ≤ Z ≤ 10 vary by less than 6%. Also, the
atomic Auger rates Aaa′ for the different decay paths (i.e.,
two-hole combinations a,a′) are replaced by an averaged rate
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Â, such that the variation of the molecular decay rate Iv,v′ is
determined solely by the changes of the populations C2

va , C2
v′a′

of the atomic valence orbitals.28

If this scenario holds true, the total decay rate � of a core
shell vacancy should be proportional to the number of pos-
sible combinations of creating two holes in the valence elec-
trons that occupy the atomic orbitals of the central atom. To
test this idea, we estimated the number of valence electrons
nval from the Mulliken population on that atom from the CI
wave function for the single or double core ionized state, re-
spectively. It follows that the rates should approximately obey

� =
{

Â(K) 1
2 n

(K)
val

(
n

(K)
val − 1

)
for a single core hole,

Â(KK) n
(KK)
val

(
n

(KK)
val − 1

)
for a double core hole,

(7)
i.e., the relationship between �K and �KK and the number of
possible combinations of creating two holes, nval(nval − 1)/2,
should be linear.

Overall, as can be seen from Fig. 1(a), both decay rates
indeed follow this expected trend according to Eq. (7). To
test whether the remaining deviations are mainly due to our
particular — and somewhat arbitrary — choice of population
analysis, Fig. 1(b) shows the same data, but with the number
of valence electrons nval derived from Löwdin populations35

instead. Because only minor changes are seen, the deviations
are likely to have a different origin.

To address this issue, we note that, whereas the effect of
varying Z seems to be well described for neutral molecules by
both approaches, the electron populations seem to be larger
for the anions than expected from the respective decay rates,
and smaller for the cations. In fact, inspection of the respec-

FIG. 1. (a)–(c) Decay rate per core hole as a function of the number of va-
lence electron pairs nval(nval − 1)/2 on the atom at which the core hole is lo-
cated, estimated from the respective core ionized state wave function via (a)
Mulliken and (b) Löwdin population analysis, as well as via (c) the integrated
electron density within a sphere of radius r = 1.9a0) around the core hole.
(d) Decay rate per core hole and per valence electron pair, where the number
of valence electrons nval was estimated as in Fig. 1(c). For all different meth-
ods for estimating nval the decay rate �K and �KK is roughly proportional to
nval(nval − 1)/2.

tive electron density distributions shows only little differ-
ences for varying protonation state in the vicinity of the cen-
tral atom. Apparently, both population analyzes used above
markedly exaggerate the changes of the electron density rele-
vant for Auger decay caused by different protonation states.

We therefore asked if, instead, a simple estimate of nval

via the integrated total valence electron density within a
sphere of a certain radius r around the central atom might bet-
ter capture the total electron density relevant for the Auger
two-electron integrals. We chose a value of r = 1.9 a0, a
value close to the average bond length, for which the inte-
grated electron density yields populations comparable with
the Mulliken and Löwdin population. For this choice Eq. (7)
predicts all decay rates much better [Figure 1(c)], except for
neon. Qualitatively similar results are obtained for 1.5a0 < r
< 2.5a0 (data not shown).

Overall, despite the relatively crude approximations used,
Eq. (7) describes the Auger decay rates of the considered se-
ries of molecules with varying Z — both for the two wave
function based and for the density based population estimates
— remarkably well.

Notably, in Figs. 1(a)–1(c), the slope for �KK/2, i.e.,
the averaged atomic decay rate Â(KK), is about 35% larger
than that for �K. This trend is quantified in Fig. 1(d), which
displays the ratios Â(K) = 2�K/[nval,K(nval,K − 1)] and Â(KK)

= �KK/[nval,KK(nval,KK − 1)] as a function of Z. Because a
similar value of enhancement has been found for neon (40%),
we attribute this 35% larger average atomic decay rate Â to
an atomic effect.

Taken together, we have identified and quantified two ef-
fects which dominate the systematic differences and trends for
single and double core hole Auger decay rates �KK/2 over �K

for the series of iso-electronic molecules studied here. The
rate enhancement for the double core hole over single core
hole is, first, due to an increased valence population in the
vicinity of the core hole and, second, due to an systematic in-
crease of the Auger decay rate per core hole and valence elec-
tron pair. The rate increase with atomic number Z can also be
attributed to an increased valence electron population on the
atom with the core hole. Generalizing these ideas, we propose
that the presented approach is applicable to other molecules in
which single and double core holes (single-sited) are located
on elements with low atomic number Z.

We note that in this work effects of nuclear motion have
been neglected. For the water molecule these effects have
previously been found to affect the spectrum of the Auger
electrons.14 However, the total decay rate, which we address
here, turned out to be nearly independent of the nuclear dy-
namics. We therefore assume that this is also the case for the
molecules considered here.

IV. SUMMARY AND CONCLUSION

In summary, we have calculated molecular Auger decay
rates for single core hole (K-LL) and double core hole (KK-
KLL) states for the iso-electronic series of first row hydrides
with atomic numbers Z = 6. . . 10 and their singly charged pro-
tonated states. We demonstrated that decay of molecular dou-
ble core hole states is 40% to 90% faster than twice the decay
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of the single core hole. This finding is partially explained by a
valence electron shift towards the atom at which the core hole
is localized. An unexpectedly simple model based on popu-
lation analysis enables one to estimate Auger decay rates in
molecules. As molecular Auger decay of multiple core holes
is a crucial factor for the charging up of molecular samples
in coherent diffractive imaging experiments with XFEL,1, 2

our approach should help to develop efficient descriptions and
models of how radiation damage evolves after multiple core
ionization also in larger molecules.
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3.4 Auger spectrum of acetylene after single and double
core ionization

3.4.1 Introduction

So far, I considered only core hole vacancies in molecules with one K-shell in this the-
sis. Now, I will study a molecule with two heavier nuclei, specifically, I consider the
Auger decay after single and double core ionization in acetylene (C2H2). Acetylene was
selected as it is one of the simplest hydrocarbons and thus represents a starting point
for future studies of hydrocarbons. Furthermore, the linear symmetry of this molecule
(point group symmetry D∞h) simplifies electronic structure calculations considerably.
With respect to the Auger decay, the situation in this molecule is different compared
with the molecules studied in the previous sections, because here the two core orbitals
are delocalized over both carbon atoms. The molecular orbital structure is sketched in
Fig. 3.8. As can be seen, acetylene contains 14 electrons and the energetically highest
occupied molecular orbital is the πu orbital, which forms together with the 3σg molecular
orbital the triple-bond. The two core orbitals, one with gerade and one with ungerade
parity, are energetically nearly degenerate, which give rise to two energetically close lying
single core ionized states. The K-LL Auger decay originating from these two core ionized
states have been studied before experimentally by Kivimäki et al. [57] and theoretically
by Colle et al. [21].

Double core ionization of acetylene gives rise to two distinct types of Auger transi-
tions originating from double ionization on the same nuclear site (single-site double core
hole) or on different nuclear sites (two-site double core hole). Recently, the Auger spec-
tra corresponding to these two types of double core ionization in acetylene has been
measured by Lablanquie et al. [63] via single-photon double core ionization using multi-
coincidence techniques. In calculations, these Auger decay transitions have — up to my
knowledge — only been studied based on population analysis [91], and calculations of
the absolute double core hole decay rate have not been performed, yet. As motivated in
the introduction (chapter 1), these quantities provide important insight into the radia-
tion damage mechanism of a molecule exposed to the high intense X-ray pulse provided
by XFELs, as the refilling of a core vacancy determines how fast subsequent ionization
occurs.

In the following subsections, I will show how the decay rates for the two double core hole
types in acetylene were obtained. Further, I will demonstrate that the core hole screening
effects, studied in the previous section 3.3 for molecules with a single K-shell [51], have
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dramatic effects on the decay rate of these core hole vacancies. Closer inspection of the
electron densities of the single-site and two-site double core hole states illustrates that
the two types of double core vacancies have considerably different impact on the valence
electronic structure. To assess my calculations against previous studies [13, 21, 22, 55,
57] I will also present results regarding the K-LL Auger spectrum originating from single
core ionization.

CH CH

↑ ↓
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↑ ↓
1s↑ ↓

1σg

↑ ↓
1σu

↑ ↓
2s
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Figure 3.8: Molecular orbital diagram of acetylene (C2H2) with orbital energies from
a neutral state RHF calculation for the occupied and the first unoccupied
molecular orbitals.
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3.4.2 Computational details

For all the calculation performed for this section, I used molecular orbitals obtained in a
Hartree-Fock calculation employing the cc-pVTZ basis set [95]. The molecular geometry
was taken from a MP2 geometry optimization performed with the gaussian09 quantum
package [36]. Initial and final electronic bound states were calculated with configura-
tion interaction calculations using multiple references. Details on the specific choice of
reference and truncation scheme are given below.

For the single center expansion, I used an adapted truncation of l,m angular quantum
numbers. Orienting the molecule along the z axis, the angular quantum number m is
a good quantum number. Keeping in mind that acetylene has two electrons in a π

orbital (m = ±1), the Auger electron can have a m quantum number for which |m| ≤ 2.
Thus, I restricted the calculation to include only spherical harmonics of |m| ≤ 2. The
center of the expansion was chosen to be at the molecular center of mass. To decide
at which angular quantum number l the calculation should be truncated, the individual
contributions of the molecular orbitals for a specific l quantum number were inspected.
Figure 3.9 shows the partial norm

∫∞
0 dr|Pi,lm(r)|2 as a function of the l quantum number

for the relevant orbitals, which were obtained in a ROHF calculation for the 1σg vacancy
state. As can be seen, for each orbital the contributions decline rapidly with l, such
that for l ≥ 10 only small contributions are found mainly for the two core orbitals.
The Auger electron may carry away at maximum an angular momentum of two bound
electrons, thus an angular quantum number truncation of l ≤ 20 was used. For the radial
expansion, a total number of 2000 radial grid points was used with a maximal grid point
at 20 a.u.
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Figure 3.9: Partial norm (
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0 dr|Pi,lm(r)|2) of the molecular orbitals of acetylene as a
function of the angular quantum number l. The upper figure shows orbitals
with gerade parity, the lower figure shows orbitals with ungerade parity. For
all considered molecular orbitals the partial norm declines rapidly with l.
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3.4.3 Auger spectrum after single core ionization
(K-LL)

Two different kinds of K-LL Auger decay transitions arise from the two core holes, 1σg

and 1σu, which are investigated here individually. Unless a resonant Auger process is
considered, in which the core electron is initially not ionized but excited to a higher lying
molecular orbital (e.g. 1σg → πg), it is impossible to discern between these two cases
experimentally. Instead, the initial ionization creates in general a linear combination of
both vacancies states. The interferences in the resulting Auger spectrum originating from
the linear combination of these two core hole states influences the angular distribution
of the emitted Auger electron. In this calculation, the angular averaged spectrum is
considered in which these interferences cancel out because of their different parity [22].
It is therefore justified to treat these two core hole states independently. The resonant
and non-resonant K-LL Auger spectra of acetylene have been studied before, both ex-
perimentally [57] and by ab-initio quantum chemical calculations [21, 22], in which a
basis set of hermite Gaussian functions was used to represent the electronic continuum.
Thus, in the following, I will assess how well these results compare with my calcula-
tions.

Computational parameters for the CI calculation

For the computation of the two Auger spectra, I used molecular orbitals which were
obtained from a restricted open shell Hartree-Fock calculation (ROHF) of the 1σg and
1σu vacancy state, respectively. The ROHF calculations were performed using the psi3
quantum package [24]. The two core vacancy states, 1σ−1

g and 1σ−1
u , were then ob-

tained using a multi-reference configuration interaction calculation, with both desired
occupations as references. All single and double excitations from these references have
been included in the calculation (CISD) with the additional restriction that there are
three electrons in both core orbitals (1σg and 1σu). For the final electronic states, I
used a CI truncation including all single and double excitations from multiple refer-
ences. These references represent all possible combinations of two valence orbital vacan-
cies.

Results

In Figure 3.10, the calculated K-LL Auger decay transitions are compared with the
experimental spectrum from Ref. [57]. To facilitate the direct comparison, all calculated
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transitions have been downshifted by 2.3 eV. As discussed in section 3.1, this shift may
result from the CI truncation, the limited basis set, and neglected relativistic effects.
In line with previous studies [21], minor differences in the transition rates between the
1σg and 1σu hole occur. The calculated transitions for the 1σg hole are convoluted by a
Gaussian profile with FWHM = 3.5 eV to mimic the broadening due to the vibrational
effects and the finite detector band width. As can be seen, the features of the experimental
spectrum are much broader in the low energy range of the spectrum compared to the
high energy part. This increase in broadening cannot be solely explained by the higher
density of inner valence vacancy states in the low energy range of the spectrum. A
similar behavior has been found for the water molecule (see section 3.2) and is explained
by taking into account the vibrational broadening more explicitly. This analogy suggests
that the inner valence hole states see a much steeper potential energy surface, such that
the lower part of the spectrum is subject to a much stronger vibrational broadening.
An investigation of the vibrational broadening for each individual transition may thus
considerably improve the agreement with the experimental spectrum and will be adressed
in future studies.

The total decay rate of the core hole was found to be 2.93 · 10−3 a.u. for the 1σg hole
and 3.04 · 10−3 a.u. for the 1σu hole. These values are in good agreement with the values
calculated by Colle et al. [21] (2.94 ·10−3 a.u. and 2.5 ·10−3 a.u.) and comply with the line
widths extracted from photo-ionization spectra (3.9± 0.1 · 10−3 a.u. [13] and 3.3± 0.3 ·
10−3 a.u. [55]). Also the previously [51] calculated value for methane (3.2·10−3 a.u.) com-
pares well with the here calculated decay rates for acetylene.

In summary, the overall spectrum is well reproduced by the calculated transition rates
originating from both, the 1σg and the 1σu core holes. The numerical procedure quan-
titatively reproduces experimental results. This agreement also supports the choice of
computational parameters for the considerations in the following subsection regarding
the KK-KLL Auger spectrum.
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Figure 3.10: Calculated K-LL Auger transitions for acetylene compared with the exper-
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Calculated transition energies have been downshifted by 2.3 eV. The major
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lence hole configuration, where T denotes a triplet final state configuration.
The red line shows the calculated transitions of the σg hole convoluted with
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3.4.4 Auger spectrum after double core ionization
(KK-KLL)

For the KK-KLL Auger transition, the following combination of double K-holes arise in
acetylene:

ψ1Σg ,+ =
1√
2

(
(1σg)

−2 + (1σu)−2
)
, (3.1a)

ψ1Σg ,− =
1√
2

(
(1σg)

−2 − (1σu)−2
)
, (3.1b)

ψ1Σu,+ =
1√
2

(
(1σg,↑1σu,↓)

−1 + (1σu,↑1σg,↓)
−1
)
, (3.1c)

ψ3Σu,− =
1√
2

(
(1σg,↑1σu,↓)

−1 − (1σu,↑1σg,↓)
−1
)
. (3.1d)

The first three are singlet states (1Σg,+ , 1Σg,− and 1Σu,+ ), the last one is a triplet
state (3Σu,−). Rewriting the molecular core orbitals as

φ1σg =
1√
2

(φ1sa + φ1sb) , and φ1σu =
1√
2

(φ1sa − φ1sb) , (3.2)

where φ1sa and φ1sb are now atomic core orbitals localized on carbon atom a and b,
respectively, yields

ψ1Σg ,+ =
1√
2

(
(1sa)

−2 + (1sb)
−2
)
, (3.3a)

ψ1Σg ,− =
1√
2

(
(1sa, ↑ 1sb, ↓)−1 + (1sb, ↑ 1sa, ↓)−1

)
, (3.3b)

ψ1Σu,+ =
1√
2

(
(1sa)

−2 − (1sb)
−2
)
, (3.3c)

ψ3Σu,− =
1√
2

(
(1sa, ↑ 1sb, ↓)−1 − (1sb, ↑ 1sa, ↓)−1

)
. (3.3d)

From these equations one can infer, that the first and the third singlet states (1Σg,+

and 1Σu,+) represent a linear combination of hole states, in which both K-holes are
located on the same nuclear site. In contrast, the second singlet and the triplet state
(1Σg,− and 3Σu,−) represent hole states with both K-holes located on different nuclear
sites [17].

Although the 1σg and 1σu orbitals are nearly degenerate, the two types of combina-
tions, the single-site and the two-site double core holes, are energetically well separated
mainly due to the electrostatic repulsion between the two holes. Thus, the spectroscopic
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analysis of these different types of molecular double core holes provide sensitive infor-
mation on the distance of the two involved core holes and thereby on the molecular and
electronic structure [82, 90].

Computational details of the CI calculation

For the calculations of all KK-KLL Auger transitions, I used molecular orbitals which
were obtained by a ROHF calculation performed with the psi3 quantum package [24]
in which each of the 1σg and 1σu orbitals was singly occupied. With these molecular
orbitals, initial and final states were calculated in a configuration interaction calculation
setup similar to that used for the calculation of the K-LL Auger transitions. In particular,
single and double excitations from multiple references that represent all double vacancies
in the core were used for the initial states with the additional restriction of having always
two electrons in the two core orbitals. The final electronic states were obtained from
configuration interaction calculations including all single and double excitations from
multiple references that represent all combinations of having two vacancies in the valence
orbitals. Additionally, it was required that in all configurations there are three electrons
in the two core orbitals. Whereas the singlet states always decay into final doublet states,
for the decay of the triplet double core hole state 3Σu,− also final quadruplet states were
calculated.

Results

The calculated KK-KLL Auger transitions for the single-site core hole states are shown
in Fig. 3.11. As for the K-LL transitions, the transition energies have been downshifted
by 2.3 eV to yield a better agreement with the experimental spectrum. Both single-
site core hole states 1Σg,+ and 1Σu,+ reveal slight differences in some transition rates,
which is in line with the observation for the K-LL Auger transitions. The Auger decay
transitions originating from the 1Σg,+ double core hole state convoluted with Gaussian
functions with FWHM 3.5 eV are in good agreement with the measured spectrum. As
observed for the K-LL Auger spectrum, the spectral features tend to be broader in
the low energy range. Closer inspection of the potential energy surfaces might also
provide a more reliable convolution scheme for incorporating the vibrational broadening
here.

Direct comparison of the calculated KK-KLL Auger decay transitions for the two-
site double core hole states with the experimental spectrum is more difficult, as the
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experimental spectrum for these transitions is vague. The experimental detection of the
two-site double core Auger electrons is much more challenging, as the probability for a
two-site double core hole via single-photon ionization is much lower, namely only 1.6%

with respect to single-site double core ionization [63]. Furthermore, the energies of the
emitted Auger electrons overlap with those originating from a single K-hole. The re-
sulting experimental values have therefore very large error bars. Figure 3.12 shows the
calculated KK-KLL Auger transitions compared to the experimental KK-KLL Auger
spectrum for the two-site double core hole states. As observed for the single-site KK-KLL
Auger decay and the K-LL Auger decay, slight differences occur in the calculated transi-
tions for the two nearly degenerate core hole states 1Σg,− and 3Σu,−. The convoluted
transition rates, here again shifted by 2.3 eV, are in agreement with the experimental
spectrum.

Table 3.3: Calculated total transition rates ΓAuger and life times τ for double K-holes in
acetylene.

core hole state ΓAuger in 10−3 a.u. τ in fs
1Σg,+ 11.79 2.1
1Σu,+ 11.79 2.1
1Σg,− 5.20 4.6
3Σu,− 5.16 4.6

The total decay rates obtained for all four double core hole states are listed in Table 3.3.
It can be seen, that the decay rates within the single-site and the two-site double core
holes are pairwise almost equal. The previously calculated total decay rate for double
core ionized methane (11.6 · 10−3 a.u.) [51] is in good agreement with the decay rates of
the single-site double core holes. Remarkably, the decay rates of the single-site double
core holes (1Σg,+ and 1Σu,+) are much larger compared with the decay rates of the
two-site core holes (1Σg,− and 3Σu,−).

This observation is in line with the findings in section 3.3, which explains the en-
hancement of Auger decay rates as a result of the core hole screening effects. A double
core hole located on the same nuclear site causes strong screening effects, such that
valence electrons from the non-ionized carbon nucleus are transferred towards the core
hole. In contrast, for core holes located on different sites, these screening effects are
non-cooperative and thus much weaker. The increased valence electron density results
in a much larger number of valence electrons that are in the vicinity of the core hole and
thus available for recombination in the Auger decay. Therefore, the decay rate in the
single-site double core holes is much higher.
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To investigate this core hole screening mechanism in more detail, I now compare the
different electron density distributions for the different core hole states. To perform
this analysis for the single-site double core holes, a wave function with localized core
holes (both located on carbon atom a) was considered, which is given by the linear
combination

ψ1sa−2 =
1√
2

(
ψ1Σg ,+ + ψ1Σu,+

)
. (3.4)

The electron density distribution of this wave function ρ1sa−2(r) reads in terms of the elec-
tron density distributions of the two states 1Σg,+ and 1Σu,+

ρ1sa−2(r) =
1

2

(
ρ1Σg ,+(r) + ρ1Σu,+(r) + 2 Re ρtrans

1Σu,+ 1Σg ,+
(r)
)
, (3.5)

where ρ1Σg ,+(r) and ρ1Σu,+(r) are the electron density distributions of the 1Σg,+ and
1Σu,+ wave functions, respectively, and ρtrans

1Σu,+ 1Σg ,+
(r) is the corresponding transition

density.

Accordingly, for the single core hole, I consider the electron density distribution from
the linear combination of both, the σ−1

g and σ−1
u core hole states,

ψ1sa−1 =
1√
2

(
ψ2Σg + ψ2Σu

)
, (3.6)

from which the electron density is derived accordingly. The resulting electron densities
are illustrated in Fig. 3.13, where a planar cut through the electron density containing the
molecular axis is shown. As anticipated, the single-site double core hole results in much
stronger valence electron rearrangements than those observed for the other core hole
states. The stronger screening effect is also quantified by the number of valence electrons
located on the respective core ionized carbon atom as estimated by the Mulliken and
Löwdin population analysis. The resulting valence electron populations are shown in
Table 3.4.

In summary, single-site double core holes in acetylene have a much stronger decay rate
than two-site double core holes. This is explained by the different core hole screening
effects, which are cooperative in the single-site case and anti-cooperative in the two-site
case.
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Table 3.4: Valence electron population on the respective core hole site for the neutral,
single, and double core ionized states of acetylene obtained by Mulliken and
Löwdin population analysis.

Core hole state Mulliken Löwdin
Neutral 4.30 4.15

Single core hole 4.83 4.64
Double core hole (two-site) 4.41 4.29

Double core hole (single-site) 5.56 5.69
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Figure 3.11: Calculated KK-KLL Auger transitions compared with the measured spec-
trum for the single-site core hole states. The calculated transition rates are
denoted by magenta and blue vertical lines for the 1Σg,+ and 1Σu,+ dou-
ble core hole states, respectively. Calculated transition energies have been
downshifted by 2.3 eV. The experimental spectrum was taken from Ref. [92]
(black error bars). The calculated transitions originating from the 1Σg,+
double core hole state have been convoluted with a Gaussian function with
3.5 eV FWHM (red line).
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1Σg,− double core hole state have been convoluted with a Gaussian function
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Figure 3.13: Planar cut through the electron density of acetylene (C2H2) containing the
molecular axis for the neutral, single, and double core ionized state (both
on a single nuclear site and on two nuclear sites). Green lines denote the
electron density contour lines. For each core hole state (single and double
core holes) the electron density is deformed due to screening effects.
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3.4.5 Discussion & Outlook

In this section, I have applied the developed approach to the single and double core hole
Auger decay in acetylene. Auger electron spectra and total decay rates were calculated
for all types of single and double core holes. Calculated K-LL Auger transitions agree
well with previously calculated [21] and experimentally determined values [13, 55, 57].
For KK-KLL Auger transitions, the calculated spectra are in good agreement with those
from experiments [63]. Previous calculations addressing the KK-KLL Auger decay in
molecules with two K-shells [91, 92] were based on an electron population estimate of
the two-electron integrals and do not allow any statement about the decay rate. The
calculation performed here is therefore the first ab-initio calculation of decay rates for
this type of Auger decay. Interestingly, the decay of a single-site core hole was found
to be much faster than that of the two-site double core hole, which is explained by the
much stronger valence electron rearrangement for the single-site core holes. This finding
again reveals that the core hole screening mechanism has a strong impact on the Auger
decay.

Further studies should extend these calculations to ethane (C2H6) and ethylene (C2H4)
to investigate a possible systematic influence of the electronic valence structure. Also,
the dependence on the carbon-carbon bond length should be addressed. It was pointed
out before [17] that the energies of two-site double core holes sensitively probe chemical
environment. Thus, it can be speculated that the Auger spectrum of two-site double
core holes also show a strong dependence on the molecular geometry. This way, Auger
electron spectroscopy of two-site double core holes might provide a new tool for sensitive
probing molecular geometries [90].
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With the development of X-ray free electron lasers, the decay of molecular double core
ionized states has become an active field of current research. One of the key processes
relevant in this context is the Auger decay. In this thesis, I describe the development and
implementation of a method to investigate Auger decay and ionization processes in small
molecules after single and double core ionization. This method is based on configuration
interaction calculations (CI) in combination with the single center approach to represent
the electronic continuum. The accuracy of this approach was assessed in comparisons
with previous experimental and theoretical studies. New results were obtained for the
water molecule, where the the fast proton dynamics in relation to the core hole decay
was investigated. Furthermore, I performed a study of absolute decay rates for double
K-holes in first-row hydrides. These double K-holes were found to result in considerable
rearrangements of valence electrons (core hole screening effects) that strongly enhance
Auger decay rates. A relation to estimate these enhancements from a simple electron
population analysis was derived. I also applied the developed approach to acetylene.
Remarkably, the obtained Auger decay rates for acetylene were found to be substantially
larger for double core holes located on the same nuclear site than for double core holes
located on different nuclear sites.

Among these results, I consider most important that the decay of double K-holes in
molecules is much faster than expected from single K-hole decay rates. As I have shown,
this enhancement is a result of the relaxation of the molecular electronic structure dur-
ing core ionization. The consequence of this finding is that significantly higher ionization
rates in molecules exposed to intense X-ray radiation are achieved than was to be expected
from atomic calculations or extrapolated from single K-hole decay rates.

A coherent diffractive imaging (CDI) experiment with single molecules necessarily
involves multiple ionizations of core shells. The associated larger core hole decay rates
help to faster refill core vacancies and thus effectively lead to a larger ionization rate. This
finding may have considerable impact on the frustrated absorption mechanism, which
is suggested to temporarily delay the radiation damage: As a double K-shell vacancy
decays faster, the temporary induced X-ray transparency gained by the empty K-shell,
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lasts shorter. Thus, to rely on this mechanism, the pulse length of the X-ray beam
has to be shorter, e.g., supposedly in the regime of the double K-hole lifetime. Future
simulations of radiation damage in macro molecules could provide a more detailed insight
in the consequences of this enhanced ionization rate and might predict more specific
technical requirements for single molecule diffractive imaging. Whether this technical
requirements can be met by the new European X-ray free electron laser at DESY[32] is
not clear, yet.

Further implications for CDI experiments are connected to the electronic damage itself.
Given the fact, that for one scattered photon about ten K-holes are created (which
in Auger cascades will ionize the sample even more), the recorded electron density is
unavoidably influenced by electronic relaxation (e.g., core hole screening) effects. Also,
nuclear motion within the few femtoseconds of exposure cannot be neglected in general.
As demonstrated here for a single water molecule, protons are immediately emitted from
a biological sample. This phenomenon reduces the high charge within the molecule
and thus might on a longer timescale delay further structural disintegration. A better
understanding of these proton emittance combined with electronic relaxation effects may
provide tools to account for radiation damage during reconstruction of the molecular
geometry from obtained scattering data[74].

Essential steps in investigating mechanisms of radiation damage in small molecules,
which represent molecular components relevant for more complex bio-molecules, have
been achieved in this work. To allow explicit statements for perspective CDI experi-
ments, future work should aim at extending these calculations to further molecules. Cur-
rent limitations are the computational cost and memory requirements for calculating the
highly excited electronic states and the large number of angular quantum numbers (lm),
which needs to be considered. The latter requirement could be partially subdued by, for
example, exploiting molecular symmetries more effectively. In particular, it would be
feasible to include symmetry restrictions for the continuum electron, which would reduce
the dimensionality of the solution vector of the continuum wave functions considerably.
Also, the calculation cost could be reduced by using an advanced radial basis, e.g. radial
splines or wavelets instead of a radial grid. Furthermore, the method presented here relies
on a description of initial and final electronic states with identical sets of molecular or-
bitals and thus requires a large CI space (high truncation level). It is conceivable to adapt
different sets of molecular orbitals for the initial and the final states in a way that the re-
quired CI truncation is reduced. This approach, however, would involve another unitary
transformation for the calculation of the decay rates.

The ultimate aim is of course to study larger systems, e.g., complete macromolecules.
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To that effect a molecular component could in the calculation be embedded electrostati-
cally into a larger chemical environment. Interestingly, this procedure would also allow to
study the impact of a highly charged environment as expected in a CDI experiment. This
charged chemical environment might influence on his part the local electronic structure,
and thus modify Auger decay and ionization processes. First steps to investigate these ef-
fects have been made in recent single atom calculations [94].

Furthermore, an emitted electron may be slowed down or even trapped within a
spatially confined region, which may also have an impact on Auger decay rates and
allows the reverse process, dielectronic recombination. Also, future work may com-
bine calculations of Auger decay rates with molecular dynamics simulations. This ap-
proach would allow to address the radiation damage in a macro molecule on longer
timescales at which the nuclear displacement becomes more relevant. The computa-
tional procedure presented here could provide an essential component for such future
studies.
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