
Fakultät für
Physik

Master’s Thesis

Analyse von Protein Dynamik mit Markov
Modellen

Analysis of protein dynamics with Markov
models

prepared by

Max Linke

from Gera

at the Max Planck Institute for Biophysical Chemistry - Computational Biophysics

Thesis period: 7th February 2014 until 4th August 2014

First referee: Hon.-Prof. Dr. Helmut Grubmüller

Second referee: Prof. Dr. Marcus Müller

Abstract
Markov State Models (MSM) are a method to find slow dynamics in proteins by
approximating the slow dynamics with a Markov chain on a discrete partition of a
sub-space of the configuration space. MSMs can extract this slow dynamics informa-
tion from an ensemble of short simulations. To date MSMs require prior knowledge
about the specific protein examined to select a sub-space and a total simulation time
in the millisecond range. There have been first steps to use time-lagged independent
component analysis (TICA) [1] to automatically find the slow sub-space in a protein.
TICA has been recently used [2] with a 30 residue intrinsically disordered peptide
kinase inducible domain. We found that TICA is not guaranteed to always find the
slow sub-space in a MD-simulation. We could also show that TICA can be used to
extract slow dynamics information with MSMs from 100 Ubiquitin simulations with
a total simulation time of just 38µs.

iii

Contents

1. Introduction 1
1.1. Project Outline . 3

2. Theory 5
2.1. Markov Property Of Proteins . 5
2.2. Markov State Models . 6
2.3. Choice of low dimensional subspace 13

2.3.1. Time-lagged Independent Component Analysis 13
2.3.2. Principal Component Analysis 14

3. Methods 17
3.1. Markov State Model . 17

3.1.1. calculating discretizations . 17
3.1.2. estimating errors . 20

3.2. Time-lagged Independent Component Analysis 20
3.3. Protein setup . 22

4. Results & Discussion 25
4.1. TICA . 25
4.2. Ubiquitin . 27

4.2.1. Markov State Model . 28
4.2.2. Φ52 Ψ53 dihedral angle flip . 33

5. Conclusion 35

6. Outlook 37

A. Appendix 39

v

1. Introduction

Proteins are molecular machines that perform different functions in a cell, for exam-
ple signal transduction, regulation, transcription and others. How proteins function
is an interesting topic. Since protein function is related to their motions and dy-
namics, we have to find a way to describe the dynamics first to learn about the how
they function.

820 822 824 826 828 830
time [ns]

0.8

0.4

0.0

0.4

800 820 840 860 880 900
time [ns]

0.8

0.4

0.0

0.4

0 200 400 600 800 1000
time [ns]

0.8

0.4

0.0

0.4

0.8

(a) (b)

Figure 1.1.: a) The pincer mode [3] motion from a 1 µs MD-simulation of Ubiquitin
at different timescales. From top to bottom the timescale is increased
by one order of magnitude in each picture. b) Visualization of the pincer
mode in Ubiquitin, Source: [4]

1

1. Introduction

As an example for protein motion consider the pincer mode of Ubiquitin [3], see
fig. 1.1a. The pincer mode describes a collective motion of the whole protein that is
mainly driven by the movement of the side chain around residue 8, see fig. 1.1b. On
short timescales of 10 ns the dynamics are governed by stochastic fluctuations. On a
larger timescale of 100 ns the fluctuations stay confined to specific regions for finite
times and then quickly transitions into another region, such a transition occurs at
830 ns. On the timescale of 1µs the dynamics are governed by the jumps between
different phase space regions.

We will call such a confined region state, in the literature theses states are also
called conformations. That proteins can have different states is known from photo-
relaxation experiments on myoglobin [5]. Proteins can switch between states through
external influences or by thermal fluctuations.

This means that slow dynamics in a protein can be described by a jump process
between different states. We will model the jump process with conditional proba-
bilities for a transition between states to happen in a given time τMSM . As it can
be seen in Fig. 1.1a the dynamics in a state are very quick and it is reasonable
to assume that the system will have no memory about where it came from after a
jump. This is called the Markov property. Models that use the Markov property and
conditional probabilities are called Markov models. To build a Markov Model from
MD-simulations the conformation space is discretized into a micro state clustering
and the transition probabilities are estimated by counting observed transition be-
tween states in the simulation [6], [7]. These models of protein dynamics are called
Markov State Models (MSM).

That the systems fulfills the Markov property is just an assumption and not nec-
essarily true for a arbitrary discretization. This leads to a systematic error in the
estimated MSM. The movements describing the slow dynamics experience the steep-
est changes in the transition regions. It has been shown that the systematic error can
be made arbitrarily small by improving the estimates for the steep changes, which
means placing more states in transition regions between metastable conformations
[8]. Because it is generally not known where the transition regions are a fine micro
state clustering of the phase space is chosen. Today a Voronoi tessellation of cluster
centers calculated with clustering algorithms like k -means are common [9].

The conformation space of a protein in all atom detail has 3N dimensions, N
being the number of atoms. In high dimensions the data points become sparse
and clustering methods, that rely on distance measures, have problems because the

2

1.1. Project Outline

distance between the farthest and nearest points to a reference tends towards 0 [10].
The problem of sparse data can theoretically be overcome with more sampling, e.g.
more or longer simulations, but this is impractical in most cases. Because atom
bonds are very rigid a lot of these degrees of freedom will be correlated and contain
redundant information. We will use sub-spaces that have a minimal correlation
between different degrees of freedom. For MSMs dihedral angles [11] or RMSDs [12]
have been used. Finding a suitable sub-space usually requires experience and insight
into the specific protein that is studied. There exist methods that can automatically
find sub-spaces based on different criteria.
A common method for dimension reduction in MD-simulations that does not

require any prior information is Principal Component Analysis (PCA) [13]. PCA
aims to find a subset of n dimensions that explains most of the variation in a
system. PCA is a linear transformation to convert the spacial coordinates into a set
uncorrelated variables called principle components. By definition the first principle
component has the largest variance, the second the second largest variance and so
on. When building a MSM using the first n components with the largest variance we
automatically assume that large amplitude motions are most important in a MSM.
This assumption does not need to be true for the slow processes we are interested
in.
Another method for dimension reduction is Time-lagged Independent Component

Analysis (TICA) [14]. TICA aims to finds a sub-space with the slowest motions.
This linear transformation converts the original coordinates into a set of uncorrelated
variables but instead of maximizing for the largest variance it maximizes the values
of the autocorrelation at a predefined lag-time τTICA. In a Markovian system the
autocorrelation function shows an exponential decay and the slowest process would
have the highest autocorrelation value for any lag-time τTICA.

1.1. Project Outline

Markov State Models have been used on different proteins like the G-protein-coupled
receptor β2AR [15] or GB1 hairpin [16] but they require a large amount of simulation
time, 2.15 ms for the G-protein-coupled receptor and 0.7 ms the for the GB1 hairpin.
We want to find out if Markov State Models can be used to find slow dynamics

in Ubiquitin with a much smaller amount of simulation time, 38µs, and without
prior knowledge with the help of PCA and TICA. For TICA we also checked if it is

3

1. Introduction

always guaranteed to find the slow sub-space in a MD-simulation.
In Chapter 2 we review why it is sufficient to consider the conformation space for

MSMs and the theoretical background for MSMs. We will show how MSMs are used
to find the slow dynamics in a protein. Here we also show how TICA and PCA are
used to construct low dimensional sub-spaces.
Chapter 3 introduces the methods used to estimate a MSM from a set of MD-

simulations and the clustering algorithms k -center and k -means that are used to
discretize the sub-space. We will also discuss how the free parameter τTICA for
TICA can be chosen.
In Chapter 4 we will present the the results that show that TICA is not guaranteed

to find the slow sub-space in a MD-simulation. We will also present the analysis
of 100 Ubiquitin MD-simulations with MSMs. Each simulation is 380 ns for a total
simulation time of just 38µs.
We will discuss the relevance of the results from a broader perspective in chapter

5 and give an outlook on future work in chapter 6.

4

2. Theory

2.1. Markov Property Of Proteins

A system can be described with a Markov model if it fulfills the Markov property.
This means the systems has no memory about it’s past and it’s future is solely
determined by the current state. So the probability to go from a point x to a point
y in the time τ is given by:

p(x,y; τ)dy = P[x(t+ τ) ∈ y + dy|x(t) = x,x(t− τ)]

= P[x(t+ τ) ∈ y + dy|x(t) = x] (2.1)

x,y ∈ Ω, τ ∈ R0+

Where Ω is the complete phase space. A protein fulfills this requirement if the
whole phase space including atomic positions and momenta is analyzed. Then the
Hamiltonian equations of motion will give the time evolution from any point in phase
space. But it is not practical to use this high dimensional phase space. The first
dimension reduction is to only use the atomic positions. Leaving out the momenta
in the analysis can introduce memory at small timescales due to inertia. To check
at what timescales the Markov property is still fulfilled for the coordinates alone it
is helpful to model the interactions between the protein and a canonical heat bath
by nonlinear Langevin dynamics as shown by Zwanzig [17].

mẍ = −∆U(x)− γẋ+ Fr(t) (2.2)

Where γ is a friction constant, m the atomic masses of the atoms, U(x) the
potential energy and Fr a Gaussian distributed random force. When taking the
Fourier transform of eq. 2.2 it is possible to compare the left and right hand site

5

2. Theory

and estimate a timescale when inertia becomes negligible.

mω2x̃ = −kŨ(x) + γωx̃+ F̃r

⇒ (mω − γ)ωx̃ = −kŨ(x) + F̃r

Friction will be the dominant factor if mω � γ. To get an estimate of the
timescale at which mω = γ we use the Einstein relation γ = 2

D
kbT [18] and order

of magnitude values for kbT at room temperature, the diffusion constant of a water
molecule in water [19] and the atomic mass of a water molecule.

D ≈ 10−9 m2/s, kbT ≈ 10−21 kgm2/s2,m ≈ 10−26 kg

→ 1

ω
≈ 10−14s = 10 fs

This is a very rough estimate. The largest error is likely in the diffusion constant
because the diffusion of a single atom in a protein will certainly not be the same
as for a water molecule in water. We are in the high friction regime because we
are interested in the ns timescale. This means we can restrict our analysis to the
conformation space without introducing memory due to inertia.

2.2. Markov State Models

In this thesis we want to use MSM to extract information about the slow dynam-
ics of a protein from a set of MD-simulations. In this section we will show how
this information can be obtained from MSM, how MSMs are constructed using one
or more MD-simulations and how τMSM should be chosen. To make the flowing
mathematical derivations easier we will make two assumptions.

• Detailed Balance

In equilibrium the fraction of the system going from point x to a point y in a
time τ has to be the same as the fraction going from y to x. This is known
as detailed balance.

6

2.2. Markov State Models

µ(x)p(x,y; τ) = µ(y)p(y,x; τ) (2.3)

µ(x) is the stationary distribution and p(x,y; τ) is the probability to move
from point x to point y in the time τ .

• Ergodicity

For t → ∞ a trajectory has to come arbitrary close to any point in phase
space, which is equivalent to say that the time average and the average over
the complete phase space Ω become equal.

∫
Ω

dxµ(x)A(x) = lim
t→∞

1

t

∫ t

0

dt
′
A(x(t

′
)) (2.4)

extracting slow dynamics information from a MSM

Markov State Models are describing the time evolution of ensemble probabilities.
Considering an ensemble with a probability distribution pt(x) 6= µ(x). A straight
forward description for the time evolution is to use a continuous operator Q and
propagate p directly [8].

pt+τMSM
(x) = Q(τMSM) ◦ pt(x) =

∫
y∈Ω

dyp(y,x; τMSM)pt(y) (2.5)

It is better to use the transfer operator T [8] instead, because it can be directly
estimated from simulations, shown in sec. 2.2, and we can show that the eigenfunc-
tions of T are orthogonal using detailed balance. The transfer operator propagates
functions u which are densities normalized with the stationary distribution ut = pt

µ
.

ut+τMSM
(x) = T (τMSM) ◦ ut(x) =

1

µ(x)

∫
y∈Ω

dyp(y,x; τMSM)µ(y)ut(y) (2.6)

T is self-adjoint in a Hilbert space with weighted the scalar product 〈v|w〉µ =∫
dxv(x)∗w(x)µ(x).

7

2. Theory

〈Tv|w〉µ =

∫
dy(Tv)∗(y)w(y)µ(y)

=

∫
dyw(y)µ(y)

1

µ(y)

∫
dxp(x,y; τMSM)µ(x)v(x)

d.b.
=

∫
dyw(y)µ(y)

1

µ(y)

∫
dxp(y,x; τMSM)µ(y)v(x)

µ(x)

µ(x)

=

∫
dxv(x)µ(x)

1

µ(x)

∫
dyp(y,x; τMSM)µ(y)w(y)

=

∫
dxv(x)µ(x)(Tw) = 〈v|Tw〉µ

For the third step the detailed balance assumptions was used. This means that all
eigenvectors of T are orthogonal and the eigenvalues are in the range of −1 ≤ λi ≤ 1.
It follows from the definition that T and Q have the same eigenvalues and that their
eigenvectors Ψi and Φi differ by the stationary distribution.

QΦi(x) = λiΦi(x)

TΨi(x) = λiΨi(x)

Φi(x) = µ(x)Ψi(x)

Because T is self-adjoint the eigenfunctions Ψi are orthogonal to each other and
T can be decomposed into it’s eigenfunctions

ut+kτMSM
= [T (τMSM)]k ◦ ut =

n∑
i=1

λki 〈ut,Ψi〉µΨi(x) (2.7)

Every physical system has to reach equilibrium for t→∞. Ergodicity states that
there can be only one eigenvalue that is equal to one λi = 1. If two eigenvalues
were exactly one then there would exist two disconnected subsets in Ω and it would
be possible to construct a trajectory that does not visit every point in Ω in an
infinite time. Then a trajectory could be constructed that stays in only one subset
and the time and space averages won’t be equal anymore. For Q the corresponding
eigenfunction is the equilibrium distribution and for T it is a constant. See fig. 2.1
for a 1D energy landscape with 4 wells and the respective eigenfunctions.

8

2.2. Markov State Models

a) b)

c) d)

Figure 2.1.: a) one dimensional energy landscape with 4 local minima. b) sorted
eigenvalues spectrum of T . c) The first 4 eigenfunctions of Q for this
system. Φ1 is the equilibrium distribution, Φ2 is the slowest process
that describes the transition over the highest barrier from left to right.
Φ3 and Φ4 describe the transition over the other two barriers. d) Eigen-
functions of T . For the equilibrium process the eigenfunction Ψ1 is a
constant and Ψ2 til Ψ4 show how probability is flowing for each process.
Source: [8]

9

2. Theory

Each eigenfunction with a eigenvalue different from 1 represents a process in
the system that is decaying over time. The eigenvalues λi correspond to physical
timescales and it can assigned an implied timescale iti [8].

ut+kτMSM
=

n∑
i=1

exp

(
−kτMSM

iti

)
〈ut,Ψi〉µΨi(x)

⇒ iti = −τMSM

lnλi
(2.8)

This definition includes that the timescale for the equilibrium is infinity. If there
is a separation of timescales of the diffusion in a state and the jumps between states
then the sorted eigenvalue spectrum will have a gap, see fig. 2.1. The location of
the gap will give the number of metastable states. For a simple energy landscape
with 4 minima the eigenvalue spectrum shows a gap after the 4th eigenvalue, see fig
2.1 b). The eigenfunctions with an eigenvalue lower then λ4 are describing the rapid
mixing dynamics inside of the states.
This means that by calculating the eigenvalues and eigenfunctions of T we can

extract the slow processes of a protein and their timescales.

estimating a MSM from simulation

1
2

3
4 5

6

7

time

state
7
6
5
4
3
2
1

projection

Ω

Figure 2.2.: A trajectory in the discretized phase space Ω is projected into the dis-
cretization. Source: [8]

To estimate the transfer operator from one or more simulations the conformation
space it covers has to be discretized, see fig. 2.2. Typically a crisp discretization like
a Voronoi tessellation is used. We will explain the discretization algorithms that we
used in this thesis in chap. 3. For a crisp discretization the phase space is portioned
into n sets S = S1, . . . , Sn such that

⋃n
i=1 Si = Ω and Si

⋂
Sj = ∅ ∀j 6= i. The

10

2.2. Markov State Models

probability for a transition from state i to j is then given by the probability to be
in i at time t and j at time t+ τMSM divided by the probability to be in i at time t
[8].

Tij(τMSM) = P[x(t+ τMSM) ∈ Sj|x(t) ∈ Si] (2.9)

=
P[x(t+ τMSM) ∈ Sj ∩ x(t) ∈ Si]

P[x(t) ∈ Si]

These probabilities can be estimated from simulations with the count matrix cij
and the following membership function χi:

χi(xk) =

1 xk ∈ Si
0 otherwise

cij(τMSM) = cij(l∆t) =
N−l∑
k=1

χi(xk)χj(xk+l) (2.10)

The count matrices from different simulations can be added up to obtain a com-
bined matrix for the set of simulations. Then Tij(τMSM) becomes [8].

Tij(τ) =
cij(τ)∑n
j=1 cij(τ)

(2.11)

choice of τMSM

We use the Chapman-Kolmogorov equation to construct a simple test to determine
which lag-time τMSM should be chosen to construct a MSM. The equation says that
the transfer operator for nτMSM is equal to applying the operator for τMSM n times
[20].

T (nτMSM) = T (τMSM)n

If this equation is fulfilled the implied timescales for T (nτMSM) are equal to that
of T (τMSM)n.

11

2. Theory

it =
nτMSM

− lnλi,T (nτMSM)

=
nτMSM

− lnλni,T (τMSM)

=
nτMSM

−n lnλi,T (τMSM)

=
τMSM

− lnλi,T (τMSM)

(2.12)

This is a necessary condition for a system to fulfill the Markov property but it
is not sufficient. Fig 2.3 shows an example how the implied timescales behave as a
function of the lag-time τMSM . For small τMSM the implied timescale will initially
rise. When the lag-time is large enough so that the dynamics in a state are rapidly
mixing and the probability to jump into any other states become independent from
the previous state in the time τMSM then the implied timescales will be constant.
The smallest τMSM at which this happens should then be chosen to build the MSM.
The implied timescale can rise again if the lag-times used are getting larger then
the implied timescales. Another reason for the implied timescales to rise again is
that the number of statistically independent observed transitions will diminish with
increasing lag-times [21].

60 80 100 120 140 160 180 200
τMSM [ns]

950

1000

1050

1100

1150

1200

1250

1300

1350

1400

it
 [

n
s]

Figure 2.3.: Implied timescales as a function of the lag-time τMSM . In the yellow
region the lag-time τMSM is chosen so short that the system is not
memory free. In the green region the timescale is rising again because
either τMSM is getting larger then the it or sampling is becoming an
issue.

12

2.3. Choice of low dimensional subspace

2.3. Choice of low dimensional subspace

To build an accurate MSM it is not only important to have a good micro state
discretization and chose the correct lag-time τMSM but also to chose an appropriate
low dimensional coordinate space for the discretization. Dihedral angles [22] and
RMSD [15] based coordinate spaces have been used in the past. These methods
require an insight into the specific protein as it is often not clear in the beginning
which sub-space is best or if e.g. should the RSMD only be used from specific parts
of the protein [15]. There is no known way to automatically always choose the best
coordinate space. Two methods to choose a possible coordinate space are PCA and
TICA.

2.3.1. Time-lagged Independent Component Analysis

TICA is a method to determine n slow motions in a protein that are a linear com-
bination of the atomic positions. This linear combination can already be a good
approximation of the slow processes describes with MSM that generally are not a
simple linear combination of the atomic positions. TICA was used to study slow
dynamics in lysine, arginine, ornithine-binding protein [23] and to build MSMs [2].
The TICA components have to fulfill two properties:

• They are uncorrelated at time zero

• Their autocovariance at a fixed lag-time τTICA are maximal.

The TICA eigenvectors can be obtained by solving the following eigenvalue prob-
lem [24]:

C(τTICA)vi = C(0)viλi (2.13)

Where C(τTICA) is the time-lagged covariance matrix defined as:

cij(τTICA) = 〈ri(t)rj(t+ τTICA)〉 (2.14)

Where ri(t) is the mean free i-th atomic coordinate.

13

2. Theory

2.3.2. Principal Component Analysis

Principal Component Analysis is a common dimension reduction technique for MD-
simulations that aims to select n modes containing as much as possible of the vari-
ations present in a simulation. Here we assume that the large variance motions
identified by the PCA will also be the slowest motions. Fig. 2.4 shows the PCA
modes for a two dimensional multivariate Gaussian.
The first mode is determined by a linear function vT1 x of x that maximizes the

variance [13].

vTi x =
M∑
j=1

vijxj (2.15)

The second mode is determined by a linear function vT2 x that is uncorrelated to v1

and has maximal variance. This continues until the ith linear function vTi x that has
a maximal variance while being uncorrelated to vT1 x,vT2 x,...,vTi−1x. The functions
vi are the eigenfunctions of the covariance matrix C(0), see eq. 2.14, corresponding
to the i-th largest eigenvalue λi and the eigenvalues λi give the variance in the i-th
mode.

C(0)vi = λivi (2.16)

14

2.3. Choice of low dimensional subspace

10 5 0 5 10 15 20
15

10

5

0

5

10

15

Figure 2.4.: 100 random points from a multivariate Gaussian distribution. The two
modes with the largest variance identified by the PCA are shown as red
arrows.

15

3. Methods

3.1. Markov State Model

3.1.1. calculating discretizations

To calculate the discretization of the chosen sub-space we will use the clustering
algorithms k -center and kmeans. Both algorithms will place a pre determined number
of cluster centers based on different cost-functions. Each observed point is then
designed to the nearest cluster centers. This is called a Voronoi tessellation.

k-center

Figure 3.1.: k -center clustering with 300 clusters in the first 2 PCA modes of Ubiq-
uitin. The clusters are evenly sized independent of the local density.

k -center creates clusters with approximately equal radii [25]. This is done by
finding a clustering that minimizes the maximal distance of all points in a cluster

17

3. Methods

to the cluster center. Which can be expressed by the following cost function:

Cc(x, σ) = arg min
S

max
i
||xi − σ(xi)|| (3.1)

S is the set of clusters and σ is a function to map a point xi to the nearest
cluster center. It is important to note that only observations can be cluster centers.
An approximate solution to this problem can be implemented with a complexity of
Ω(kN), where k is the number of clusters and N is the number of observations and
works as follows:

1. pick a random point as the initial cluster center and assign all other points to
that cluster.

2. calculate the distances to the nearest cluster center

3. Choose the point that has the greatest distance to all cluster centers

4. reassign every point to the closest cluster center

5. repeat step 2-3 until a termination criteria is met e.g. number of clusters

Because this clustering method optimizes for the unweighted inner cluster distance
it is less likely to assign cluster centers close to each other in regions with a high
density. This can help constructing stable MSM because according to Prinz et al.
[8] the discretization error can be minimized by using more cluster centers in the
transitions regions and only sparsely cluster the metastable regions.

k-means

k -means is minimizing the within-cluster sum of squared distances.

arg min
S

k∑
i=1

∑
xj∈Si

||xj − µi||2 (3.2)

Where µi is the arithmetic mean of the cluster Si. The largest distinction to
k -center is that the cluster center can be assigned to any point in phase-space. The
standard Llyods algorithm is already fast with an average complexity of Ω(nkt) [26],

18

3.1. Markov State Model

Figure 3.2.: k -means clustering with 300 clusters in the first 2 PCA modes of Ubiq-
uitin. The clusters tend to be smaller in regions where the density is
high and larger in places with lower density.

where n is the number of samples, k the number of cluster centers and t the number
of iterations. But for large data sets it still takes a considerable amount of time.
Because of this we use the Mini-batch-k -means algorithm [27]. This algorithm uses
a random batch of points b in each iteration step and therefore has a run-time of
Ω(bkt). The speedup gained by this depends on the ratio between the number of
points in a batch and the total number of points. In our case b is much smaller then
the total number of observed transitions. The algorithm works as follows.

1. choose n cluster randomly from trajectory

2. pick b random examples

3. calculate nearest center for examples

4. update centers based on examples

5. repeat 2-4 until termination

The k -center clustering can potentially put a lot of cluster centers at the outer
edges of the phase space with only a small number of observations in that cluster and
few clusters in high density regions with a large number of the total observations.

19

3. Methods

In comparison k -means will produce a clustering where the number of observations
inside a cluster is more evenly distributed. Which in return will give better statistics
in the count matrix.

3.1.2. estimating errors

To estimate the statistical error of the count matrix, eq. 2.10, and derived quantities
we are using a bootstrap method [28]. We will generate new samples of transition
from the original observed transitions and then estimate the error by averaging over
the values calculated from the new samples. A new sample is generated by randomly
choosing a transition from the original transitions, until the same amount of data
as in the original data set is obtained.

3.2. Time-lagged Independent Component Analysis

The time lagged covariance matrix, eq. 2.14, can be directly calculated from a
trajectory with:

cij =
1

N − τ − 1

N−τ∑
t=1

ri(t)rj(t+ τ)

Where ri are the mean free observed atomic positions ri = xi−〈xi〉T . To calculate
this for an ensemble of trajectories the matrix can be averaged if all the simulations
have the same length C = 1

M

∑M
i=1 C̃i. Assuming that the dynamics are reversible

the matrix is symmetrical. For finite data sets, symmetry must be enforced, C =
1
2
(C̃ + C̃T).

choice of τTICA

Since τTICA is a free parameter in TICA we need a way to determine a possible
choice of τTICA from the simulation. Our approach is to calculate the ACF from the
projections of the first 10 PCA modes and pick the longest estimated autocorrela-
tion time τ of the projections. We will estimate the autocorrelation time from the
normalized autocorrelation function.

20

3.2. Time-lagged Independent Component Analysis

ACF (t) = 〈xt′xt′+t〉T =
1

N − t− 1

1

〈x〉

T−t∑
i=0

xixi+t

To estimate the autocorrelation time from the ACF we use 3 different methods
that are based on the assumption that the true normalized ACF is an exponential
decay.

ACF(t) = e−
t
τ (3.3)

The simplest estimate is the time where the ACF first falls below 1
e
.

1

e
= e−

τ
τ ⇒ τ = arg min

t
ACF (t) <

1

e

The second method is to use the fact that the integral over the exponential decay
is equal to the autocorrelation time.

τ =

∫ ∞
0

ACF(t)dt

For finite data sets this integral cannot be evaluated until infinity. So for the
estimates the infinity is replaced with an finite T that is set to the shortest time the
ACF falls below 0 or half the time of the simulation.

The third method is to estimate the autocorrelation time only from the initial
values. For this we calculate the integral over the ACF up to a time T and then
take the Taylor series of this up to the third order. The equation can then be solved
for τ .

21

3. Methods

F =

∫ T

0

dtACF(t)

=

∫ T

0

e−
t
τ dt

= τ(1− e−
T
τ)

≈ T − T 2

2τ
+
T 3

6τ 2

→ τ =
−3T 2 −

√
3(8F − 5T)T 3

12(F − T)
(3.4)

In an ideal case for T smaller then τ errors are at most 5%. This function only
works so long as (8F − 5T) > 0, which if F is substituted means that T ≤ τ . To
determine the optimal T from a simulation we use the largest T that is smaller then
1
e
and bigger then 8F .
The 3 algorithms are named as follows in the rest of this thesis.

1. “decay” τTICA = arg min
t

ACF(t) < 1
e

2. “integral” τTICA =
∫ T

0
ACF(t)dt

3. “taylor” τTICA =
−3T 2−

√
3(8F−5T)T 3

12(F−T)

3.3. Protein setup
We analyzed 100 simulation of Ubiquitin (PDB code 1UBQ) in the NPT ensemble
with a pressure of 1 Bar, a temperature of 300 K and a length of 381.4 ns each for a
total time of 38.14µs. The simulations were done using the Gromacs 4.6 molecular
dynamics package with the AMBER99SB forcefield [29] and the SPCE water model
with an integration step of 4 fs. Snapshots have been recorded every 20 ps.

22

3.3. Protein setup

Figure 3.3.: Crystal structure of Ubiquitin from the protein data base (PDB code
1UBQ)

23

4. Results & Discussion

4.1. TICA
To find out if TICA will find the slow motions for simulations that are not converged
we applied TICA and PCA to one simulation of a 100 dimensional random walk
in a flat energy landscape and compared them, see fig. 4.1. The random walk
was generated using 100 independent 1-dimensional walkers with a uniform stepsize
distribution between -1 and 1.

1500
1000

500
0

500
1000
1500

800
600
400
200

0
200
400
600
800

a
.u

.

0 50000 100000 150000 200000

steps

80
40
0

40
80

120

Figure 4.1.: Projection of the first PCA and TICA modes of a 100 dimensional ran-
dom walk in a flat energy landscape with 200000 steps. green) The
projection of the first PCA-mode. blue) The projection of the first
TICA-mode built with a lag-time of 5000 steps. Here the mode re-
sembles a sin curve with a full period. orange) Projection of the first
TICA-mode built with a lag-time of 20000 steps. The mode shows a
higher frequency oscillation

25

4. Results & Discussion

0.0 0.1 0.2 0.3 0.4 0.5
τTICA [t/T]

1.0

0.5

0.0

0.5

1.0

A
C

F

Figure 4.2.: Sketched here is the normalized ACF for periodical signals with a single
frequency. The blue curve is the ACF for a sine curve with period 1.
The orange curve is the ACF for cosine with period one-half. The ACF
for a sine curve with period 30 is shown in gray

The projection of the first PCA resembles a cosine with period one-half. Indeed
it is has been shown [30] that the PCA modes for a high dimensional random walk
in a flat energy landscape are cosine functions with a period of one half the index of
the PCA-mode. The first PCA-mode is the slowest motion in this system all other
modes show higher frequency oscillations. If TICA would always find the slowest
motion we would expect it to show similar modes as PCA. Fig. 4.1 shows that this
is not the case. For small lag-times the first TICA mode is a sine function with
period one and for larger lag-times τTICA the first mode becomes a superposition of
periodic functions with a higher frequency.

This happens because TICA is optimizing for modes that have the highest ACF
value at a lag-time τTICA. Fig. 4.2 shows a sketch of the ACF for sines and cosines
with different periods. For any given time τTICA ∈ [0, T

2
] there is a function that

has a higher ACF then a cosine with period one, so TICA cannot find this motion.
Fig. 4.2 also shows that for small τTICA a sine curve with period on has the highest
ACF value.

This means that TICA does not necessarily find the slowest motion for a simula-
tion that is not converged. Instead TICA is more likely to find motions with a high
frequency oscillation.

26

4.2. Ubiquitin

4.2. Ubiquitin

We want to know if a simulation time less then 100µs is enough to find slow motions
in a protein using MSMs. For this we analyze 100 simulations of Ubiquitin, that were
provided by Servaas Michielssens. Each simulation is 380 ns for a total simulation
time of 38µs. We applied TICA and PCA on the Cα-atoms of residue 1-71 to
construct different sub-spaces. We then proceeded to build MSM in these sub-spaces
with discretizations calculated from the k -means and k -center clustering algorithms.

Fig. 4.3a shows the projection of all simulations onto the first TICA mode. One
simulation does not overlap with any of the others in the projection of the first
mode. This happens independent of lag-times we used to construct TICA. The lag-
times were calculated from the estimated autocorrelation tims of the projections of
the first 10 PCA modes with the methods described in sec. 3.2. To check if this
wasn’t just an artifact of TICA we looked at the backbone of this simulation and
compared it to the others, see fig: 4.3b the outlier is shown red. This confirms that
this simulation is different from the others. Because MSM are build from observed
transitions between different regions of the phase space and this one never transitions
to any of the other simulations we exclude it from further analysis.

0 50 100 150 200 250 300 350
time [ns]

0.4

0.3

0.2

0.1

0.0

0.1

1
 T

IC
A

 m
o
d
e
 [

n
m

]

(a) first TICA mode (b) backbone

Figure 4.3.: a) Projection of all 100 simulations onto the first TICA mode b) Snap-
shot of all trajectories at 10 ns. Residues with a large contribution to
the first TICA mode are drawn thicker. The outlier is shown in red.

27

4. Results & Discussion

4.2.1. Markov State Model

PCA

We constructed 3 sub-spaces using the PCA from the Cα-atoms of residue 1-71. One
from the projection onto the first mode, one with the projections onto the first 2
modes and the last one with the projections of the first 3 modes. Each sub-space
was discretized with 100 clusters centers using k -means and k -center . 100 lag-times
chosen uniformly between 0.1 ns and 150 ns were used to build the MSMs. The
mean and standard deviation of the implied timescales were calculated using 100
bootstrap samples for each sub-space, see sec. 3.1.2. The implied timescales for the
first two eigenfunctions of the different sub-spaces are shown in fig. 4.4.
The first implied timescales, see blue circles in fig. 4.4, calculated in the sub-space

of the first mode are marginally larger then the lag-time τMSM used to build the
MSM with both clustering algorithms. The second implied timescales cannot be
resolved because they are always below τMSM . The standard deviation is under 1 ns

for all calculated implied timescales.
When we cluster the 2 dimensional subspace of the first two PCA modes the

first implied timescale, green circles in fig. 4.4, is significantly larger then the lag-
times τMSM and rises to almost 600 ns for the largest lag-time. The second implied
timescales cannot be resolved in this sub-space either. This does not change if the
first 3 modes are used. The standard deviation is under 3 ns for all calculated implied
timescales.
In all used sub-spaces the implied timescales never level-off. This could be because

of large internal barriers in one or more micro-states or because the PCA modes are
not describing the slow motions in Ubiquitin.

TICA

We constructed TICA modes from the Cα-atoms of residue 1-71 for different lag-
times. The lag-times τTICA, see tab. 4.1, chosen to construct the TICA modes were
estimated from the largest autocorrelation time from the projections of the first 10
PCA modes using the methods described in sec. 3.2.
The first 3 modes are parallel independent of the lag-time is chosen to construct

TICA, see tab. A.1. That TICA has found the same modes for different lag-times
indicates that the motion in these modes has an exponentially decaying autocorre-
lation function.

28

4.2. Ubiquitin

0

40

80

120

160

it
 [

n
s]

0

200

400

600

it
 [

n
s]

0 30 60 90 120

τMSM [ns]

0

200

400

600

it
 [

n
s]

(a) k -means

0

40

80

120

160

it
 [

n
s]

0

200

400

600

it
 [

n
s]

0 30 60 90 120

τMSM [ns]

0

200

400

600

it
 [

n
s]

(b) k -center

Figure 4.4.: Implied timescales for MSM’s build in different PCA sub-spaces. Blue
are the it for MSM’s build with the first mode, green for the 2 modes,
red for 3 modes. The circles show the it of the first eigenfunction and
diamonds the second. The clustering was calculated with 100 clusters-
centers for each clustering algorithm and in all sub-spaces.

decay integral taylor

9.16 ns 11.06 ns 4.12 ns

Table 4.1.: Longest autocorrelation times calculated from the projections of the first
10 PCA-modes

29

4. Results & Discussion

0

400

800

1200

it
 [

n
s]

0

1000

2000

it
 [

n
s]

0 30 60 90 120

τMSM [ns]

0

4000

8000

12000

16000

it
 [

n
s]

(a) k -means

0

400

800

1200

it
 [

n
s]

0

1000

2000

it
 [

n
s]

0 30 60 90 120

τMSM [ns]

0

10000

20000

30000

it
 [

n
s]

(b) k -center

Figure 4.5.: Implied timescales for MSM’s build in TICA sub-spaces, We used differ-
ent sub-spaces blue are the it for MSM’s build with the first mode, green
for the 2 modes, red for 3 modes. The circles show the it of the first
eigenfunction and diamonds the second. The clustering was calculated
with 100 clusters-centers in all sub-spaces.

30

4.2. Ubiquitin

We use the first 3 TICA modes to construct the same sub-spaces as described in
sec. 4.2.1. We will use the modes calculated with τTICA = 11.06 ns. Because the first
3 modes are independent from the different possible lag-times τTICA we calculated,
we could have used either of the other two lag-times as well. Each sub-space was
discretized with 100 clusters centers using k -means and k -center . 100 lag-times
chosen uniformly between 0.1 ns and 150 ns were used to reconstruct MSMs. The
mean and standard deviation of the implied timescales was calculated using 100
bootstrap samples for each sub-space, see sec. 3.1.2. The implied timescales for the
first two eigenfunctions for the different sub-spaces are shown in fig. 4.5.

Using only the first mode the first implied timescale is leveling off at about 1200 ns

for τMSM > 91 ns, see the blue circles in fig. 4.5. This behavior is independent of the
clustering algorithm. The mean implied timescale for τMSM = 91 ns is 1165 ± 4 ns

for both clusterings. The second timescale is not resolved as it always stays below
the input lag-time τMSM .

Using the two dimensional sup-space with the first 2 TICA modes we can resolve
the first and second implied timescale, see green circles and diamonds in fig. 4.5.
The first implied timescale is not leveling off using either clustering algorithm and
reaches values above 2000 ns. The standard deviation are always under 200 ns using
the k -center discretization and 80 ns using k -means . The second implied timescale
is leveling-off at about 1300 ns for both discretizations.

The first 2 implied timescales of the sub-space constructed with the first 3 modes
are shown in red in fig. 4.5. The maximal first implied timescale is reaching values
of up to 24µs using a k -center clustering and 14µs with k -means . In this sub-
space the standard deviation is also getting larger, up to 8878 ns using k -means .
This is indicating that we have sampling problems and that a few transitions are
dominating the first implied timescale.

Fig. 4.6 shows the projection of the first 3 TICA modes for all 99 simulations.
There are 8 simulations transitioning to new phase space regions. 4 in mode 2 and
4 different simulations in mode 3. A timescale for the process in a single mode can
be estimated from the number of events by dividing the total simulation time by
the number of observed events. This gives an order of magnitude estimated for the
timescale of 10µs with 4 events in about 40µs of simulation time. The implied
timescales estimated from the MSMs differ from that value by a factor of 3 or less.
This means that the timescales estimated with the MSMs are in a reasonable range
but more simulations are needed to get a better estimate.

31

4. Results & Discussion

0.20

0.05

0.10

[n
m

]

mode 1

0.05

0.10

0.25

[n
m

]

mode 2

0 50 100 150 200 250 300 350
time [ns]

0.16

0.10

0.04

[n
m

] mode 3

Figure 4.6.: Projection of 99 simulations onto the first 3 TICA modes. Simulations
that experience a jump in mode 2 or 3 are drawn with a different color
each. Simulations without a jump are down in light gray.

32

4.2. Ubiquitin

4.2.2. Φ52 Ψ53 dihedral angle flip

Figure 4.7.: a) The two states of the 53 and 52 residue. b) Backbone snapshot of 99
simulations at 10 ns. Residue 52 and 53 are shown in blue, the residues
with the 10 largest contribution to the first TICA mode are green.

The MSMs build with the first TICA mode showed the best convergence in the
implied timescales. To understand what motion the first TICA mode is describing
we looked at the backbone of the residues from the coordinates with the 10 largest
contributions to the first TICA-mode. These residues are 20, 21, 22, 49, 50, 51 and
52. Fig. 4.7 shows a snapshot of all simulations at 10 ns. All of the contributing
residues except for 52 are shown in green.
The most notable motion we found is a flip in the dihedral angles Ψ52 and Φ53.

Residues 52 and 53 are shown in blue in fig. 4.7.
To find out if the timescale of the flip is similar to the timescale calculated for the

projection of the first TICA mode we characterized the flip with two states using
the difference Ψ52−Φ53. To find a barrier separating the two states we clustered all
99 simulations using k -means with 2 cluster centers, see fig. A.1. The simulations
where the distance between the cluster centers is above 100◦ are have the flip. The
barrier is then defined as the mean of the cluster centers in all simulations with a
flip.
We calculated MSM and implied timescales with the 2 state model and in the

Ψ52, Φ53 space like before, sec. 4.2.1. We used 100 lag-times uniformly distributed

33

4. Results & Discussion

0 20 40 60 80 100 120 140 160

τMSM [ns]

500

1000

1500

2000

2500
it

 [
n
s]

(a)

200 100 0 100 200

Ψ52 [
◦]

50

100

150

200

250

300

Φ
53

 [
◦
]

(b)

Figure 4.8.: a) First implied timescales in different sub-sapces. (red) the first TICA-
mode, see Sec. 4.2.1. (blue) 2 state model of the difference Ψ52 − Φ53.
(green) k -means discretization with 100 cluster centers in the in Ψ52,Φ53

space. (purple) k -center discretization with 100 cluster centers. b)
Projection of all simulations into the Ψ52,Φ53 space.

between 0.1 ns and 150 ns and estimated the mean and standard deviation with 100
bootstrap samples, see fig. 4.8a.
The 2 state model has an implied timescale of 655± 2 ns for the MSM build with

τMSM = 150 ns. This is about half the value calculated for the first TICA mode
using the same τMSM .
When we use the Ψ52,Φ53 space and cluster it with 100 cluster centers using k -

means and k -center the implied timescales don’t converge but fluctuate around value
for the first TICA mode and have a large standard deviation.
Fig. 4.8b shows the projection of all simulations in the Ψ52, Φ53 space. Building

a good clustering in this space is hard because there are 3 irregular shaped regions
with a very high density, two small with a lower density and few points in between.
k -means will place most cluster centers here into the region with a higher density
and very few in the transition regions. k -center on the other hand will place most
cluster centers in the sparsely populated transition regions that leads to a handful
of clusters containing almost all observations.
Considering this it is surprising that the calculated implied timescales differ only

so little from implied timescales calculated with the first TICA mode. This is a
good indication that the flip in these dihedral angles is responsible for the motion
detected by the first TICA mode.

34

5. Conclusion

TICA
By applying TICA to a high dimensional random walk with a flat energy surface
we could show that the TICA modes do not necessarily correspond to the slowest
motions. We showed evidence that this is because TICA is optimizing for the value
of the autocorrelation function at a given time τTICA. This means that TICA will
only find the slowest motions if these motions have the largest ACF value at the
time τTICA.
One check to see if TICA indeed found the slowest motions is then to look for

oscillations that resemble a sine wave in the projection of first TICA mode. Another
is to build TICA with different lag-times and compare the scalar product of the
eigenvectors. If the eigenvectors are parallel then TICA has likely found a slow
motion.

Ubiquitin
Using PCA on the Cα-atoms we could not identify a slow motion in Ubiquitin. This
is not because of bad sampling, since the standard deviation is small, but rather
because PCA is not an optimal choice to build MSM for Ubiquitin.
With TICA applied to the Cα-atoms we found a slow motion with a timescale of

1165± 4 ns in the first TICA mode. We could also show that this motion is linked
to a flip in the Φ52 and Ψ53 dihedral angles.
TICA also identified one simulation that does not show a transition into a phase

space region close to any of the other simulations. When this simulation was ex-
cluded from the analysis TICA still found 8 simulations that go into new regions of
the phase space. The low number of transitions into these new regions prevented us
from getting reliable estimates for the timescale of that motion. This suggest that
there are slow motions in Ubiquitin that have a timescale larger then 10µs.

35

5. Conclusion

This means MSM can be used without accumulating simulation time in the mil-
lisecond range. A total simulation time of 38µs is already enough to study slow
motions in the case of Ubiquitin.

36

6. Outlook

TICA
Formally the general eigenvalue problem for TICA, eq. 2.13 can be interpreted as
the search for a coordinate set that maximize the value of the normalized ACF for
a specific value of τTICA.

C(τTICA)

C(0)
ui = uiλi(τTICA) (6.1)

Instead it would be possible to optimize for the autocorrelation time using a cross
correlation time matrix.

C∗ =

∫ ∞
0

C(τ)dτ (6.2)

C∗ui = uiλi (6.3)

This set of coordinates would be parameter free. This might find a cosine motion
for a high dimensional random walk in a flat landscape because the autocorrelation
time for the cosine is higher then that of a sine. We would need to check if this can
outperform the current TICA algorithm to find good sub-spaces for MSM building
with proteins..

Ubiquitin
To resolve the slow transitions and get better estimates of the timescales more
sampling is needed for this it would be possible to either spawn new simulations
from trajectories were we know that they are at the boundary of the space we
sampled so far or we use an adaptive sampling scheme like Copernicus [31].

37

A. Appendix

decay vs. integral decay vs. taylor taylor vs. integral

1 0.998 0.993 0.986
2 0.999 0.996 0.994
3 1.000 0.999 0.998
4 0.957 0.811 0.641
5 0.976 0.089 0.070

Table A.1.: Absolute value of the scalar product for the first 5 TICA modes. The
modes were calculated using different lag-times τTICA, see Tab. 4.1

600
500
400
300
200
100

0
100
200

Ψ
52
−

Φ
53

0 20 40 60 80 100
simulation

0

100

200

300

400

Figure A.1.: Top shows the cluster centers found by k -means for the distance Ψ52−
Φ53 for 99 simulations. The cluster centers with the larger value is
shown in red and the other in blue. The green line is the mean of the
cluster centers for all simulations where the distance between clusters
centers is above 100 ◦. The bottom shows the distance between the
cluster centers for each simulation.

39

Bibliography

[1] Lutz Molgedey and Heinz Georg Schuster. Separation of a mixture of inde-
pendent signals using time delayed correlations. Physical review letters, 72(23):
3634, 1994.

[2] Guillermo Perez-Hernandez, Fabian Paul, Toni Giorgino, Gianni De Fabritiis,
and Frank Noé. Identification of slow molecular order parameters for markov
model construction. The Journal of chemical physics, 139(1):015102, 2013.

[3] Oliver F Lange, Nils-Alexander Lakomek, Christophe Farès, Gunnar F
Schröder, Korvin FA Walter, Stefan Becker, Jens Meiler, Helmut Grubmüller,
Christian Griesinger, and Bert L De Groot. Recognition dynamics up to mi-
croseconds revealed from an rdc-derived ubiquitin ensemble in solution. science,
320(5882):1471–1475, 2008.

[4] Jan H Peters and Bert L De Groot. Ubiquitin dynamics in complexes reveal
molecular recognition mechanisms beyond induced fit and conformational se-
lection. PLoS computational biology, 8(10):e1002704, 2012.

[5] Hans Frauenfelder, Fritz Parak, and Robert D Young. Conformational substates
in proteins. Annual review of biophysics and biophysical chemistry, 17(1):451–
479, 1988.

[6] Peter Deuflhard, Michael Dellnitz, Oliver Junge, and Christof Schütte. Compu-
tation of essential molecular dynamics by subdivision techniques. In Computa-
tional molecular dynamics: challenges, methods, ideas, pages 98–115. Springer,
1999.

[7] Ch Schütte, Alexander Fischer, Wilhelm Huisinga, and Peter Deuflhard. A di-
rect approach to conformational dynamics based on hybrid monte carlo. Journal
of Computational Physics, 151(1):146–168, 1999.

41

Bibliography

[8] Jan-Hendrik Prinz, Hao Wu, Marco Sarich, Bettina Keller, Martin Senne, Mar-
tin Held, John D Chodera, Christof Schütte, and Frank Noé. Markov models of
molecular kinetics: Generation and validation. The Journal of chemical physics,
134(17):174105, 2011.

[9] Susanna Kube and Marcus Weber. A coarse graining method for the identi-
fication of transition rates between molecular conformations. The Journal of
chemical physics, 126(2):024103, 2007.

[10] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When
is “nearest neighbor” meaningful? In Database Theory—ICDT’99, pages 217–
235. Springer, 1999.

[11] Sidney P Elmer, Sanghyun Park, and Vijay S Pande. Foldamer dynamics ex-
pressed via markov state models. i. explicit solvent molecular-dynamics simula-
tions in acetonitrile, chloroform, methanol, and water. The Journal of chemical
physics, 123(11):114902, 2005.

[12] Gregory R Bowman, Xuhui Huang, and Vijay S Pande. Using generalized en-
semble simulations and markov state models to identify conformational states.
Methods, 49(2):197–201, 2009.

[13] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2005.

[14] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component anal-
ysis. John Wiley & Sons, 2001.

[15] Kai J Kohlhoff, Diwakar Shukla, Morgan Lawrenz, Gregory R Bowman,
David E Konerding, Dan Belov, Russ B Altman, and Vijay S Pande. Cloud-
based simulations on google exacycle reveal ligand modulation of gpcr activation
pathways. Nature chemistry, 6(1):15–21, 2014.

[16] David De Sancho, Jeetain Mittal, and Robert B Best. Folding kinetics and
unfolded state dynamics of the gb1 hairpin from molecular simulation. Journal
of Chemical Theory and Computation, 9(3):1743–1753, 2013.

[17] Robert Zwanzig. Nonequilibrium statistical mechanics. Oxford University Press,
2001.

42

Bibliography

[18] Albert Einstein. Über die von der molekularkinetischen theorie der wärme
geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. An-
nalen der physik, 322(8):549–560, 1905.

[19] Manfred Holz, Stefan R Heil, and Antonio Sacco. Temperature-dependent self-
diffusion coefficients of water and six selected molecular liquids for calibration
in accurate 1h nmr pfg measurements. Physical Chemistry Chemical Physics,
2(20):4740–4742, 2000.

[20] GregoryR. Bowman. An overview and practical guide to building markov
state models. In Gregory R. Bowman, Vijay S. Pande, and Frank Noé, edi-
tors, An Introduction to Markov State Models and Their Application to Long
Timescale Molecular Simulation, volume 797 of Advances in Experimental
Medicine and Biology, pages 7–22. Springer Netherlands, 2014. ISBN 978-
94-007-7605-0. doi: 10.1007/978-94-007-7606-7_2. URL http://dx.doi.org/

10.1007/978-94-007-7606-7_2.

[21] John D. Chodera, Nina Singhal, Vijay S. Pande, Ken A. Dill, and William C.
Swope. Automatic discovery of metastable states for the construction of
markov models of macromolecular conformational dynamics. The Journal of
Chemical Physics, 126(15):155101, 2007. doi: http://dx.doi.org/10.1063/1.
2714538. URL http://scitation.aip.org/content/aip/journal/jcp/126/

15/10.1063/1.2714538.

[22] Jan-Hendrik Prinz, John D Chodera, Vijay S Pande, William C Swope,
Jeremy C Smith, and Frank Noé. Optimal use of data in parallel tempering
simulations for the construction of discrete-state markov models of biomolecular
dynamics. The Journal of chemical physics, 134(24):244108, 2011.

[23] Yusuke Naritomi and Sotaro Fuchigami. Slow dynamics in protein fluctuations
revealed by time-structure based independent component analysis: The case of
domain motions. The Journal of chemical physics, 134:065101, 2011.

[24] L. Molgedey and H. G. Schuster. Separation of a mixture of independent
signals using time delayed correlations. Phys. Rev. Lett., 72:3634–3637, Jun
1994. doi: 10.1103/PhysRevLett.72.3634. URL http://link.aps.org/doi/

10.1103/PhysRevLett.72.3634.

43

http://dx.doi.org/10.1007/978-94-007-7606-7_2
http://dx.doi.org/10.1007/978-94-007-7606-7_2
http://scitation.aip.org/content/aip/journal/jcp/126/15/10.1063/1.2714538
http://scitation.aip.org/content/aip/journal/jcp/126/15/10.1063/1.2714538
http://link.aps.org/doi/10.1103/PhysRevLett.72.3634
http://link.aps.org/doi/10.1103/PhysRevLett.72.3634

Bibliography

[25] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306, 1985.

[26] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang,
Hiroshi Motoda, Geoffrey J McLachlan, Angus Ng, Bing Liu, S Yu Philip,
et al. Top 10 algorithms in data mining. Knowledge and Information Systems,
14(1):1–37, 2008.

[27] D Sculley. Web-scale k-means clustering. In Proceedings of the 19th interna-
tional conference on World wide web, pages 1177–1178. ACM, 2010.

[28] Bradley Efron. Computers and the theory of statistics: thinking the unthink-
able. Siam Review, 21(4):460–480, 1979.

[29] Viktor Hornak, Robert Abel, Asim Okur, Bentley Strockbine, Adrian Roitberg,
and Carlos Simmerling. Comparison of multiple amber force fields and develop-
ment of improved protein backbone parameters. Proteins: Structure, Function,
and Bioinformatics, 65(3):712–725, 2006.

[30] Berk Hess. Similarities between principal components of protein dynamics and
random diffusion. Physical Review E, 62(6):8438, 2000.

[31] Sander Pronk, Per Larsson, Iman Pouya, Gregory R Bowman, Imran S Haque,
Kyle Beauchamp, Berk Hess, Vijay S Pande, Peter M Kasson, and Erik Lindahl.
Copernicus: A new paradigm for parallel adaptive molecular dynamics. In
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, page 60. ACM, 2011.

[32] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science
& Engineering, 9(3):90–95, 2007.

[33] Fernando Pérez and Brian E. Granger. IPython: a system for interactive scien-
tific computing. Computing in Science and Engineering, 9(3):21–29, May 2007.
ISSN 1521-9615. doi: 10.1109/MCSE.2007.53. URL http://ipython.org.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

44

http://ipython.org

Bibliography

[35] J.S. Seabold and J. Perktold. Statsmodels: Econometric and statistical mod-
eling with python. In Proceedings of the 9th Python in Science Conference,
2010.

[36] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith.
Cython: The best of both worlds. Computing in Science Engineering, 13(2):31
–39, 2011. ISSN 1521-9615. doi: 10.1109/MCSE.2010.118.

[37] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy
array: a structure for efficient numerical computation. Computing in Science
& Engineering, 13(2):22–30, 2011.

45

Acknowledgment

I would like to thank Helmut Grubmüller for giving me the chance to work on this
project. Servaas Michielssens for the Ubiquitin simulations that he provided. Jan
Henning Peters and Colin Smith for discussions about Ubiquitin. I would also like
to thank Béla Voß, Andreas Volkhardt and Christian Blau for general discussions.
Last but not least I would like to thank everyone who helped me during my

master’s thesis, especially the whole Department for theoretical and computational
biophysics at the MPI for biophysical chemistry for it’s great working atmosphere.

47

Erklärung nach §18(8) der Prüfungsordnung für den Bachelor-Studiengang
Physik und den Master-Studiengang Physik an der Universität
Göttingen:

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig
verfasst habe, keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe und alle Stellen, die wörtlich oder sin-
ngemäß aus veröffentlichten Schriften entnommen wurden, als
solche kenntlich gemacht habe.
Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht,
auch nicht auszugsweise, im Rahmen einer nichtbestandenen
Prüfung an dieser oder einer anderen Hochschule eingereicht
wurde.

Göttingen, den August 17, 2014

(Max Linke)

	1 Introduction
	1.1 Project Outline

	2 Theory
	2.1 Markov Property Of Proteins
	2.2 Markov State Models
	2.3 Choice of low dimensional subspace
	2.3.1 Time-lagged Independent Component Analysis
	2.3.2 Principal Component Analysis

	3 Methods
	3.1 Markov State Model
	3.1.1 calculating discretizations
	3.1.2 estimating errors

	3.2 Time-lagged Independent Component Analysis
	3.3 Protein setup

	4 Results & Discussion
	4.1 TICA
	4.2 Ubiquitin
	4.2.1 Markov State Model
	4.2.2 52 53 dihedral angle flip

	5 Conclusion
	6 Outlook
	A Appendix

